

Final Report

Geotechnical Analysis for Gluek Park Minneapolis, Minnesota

Prepared for the

U.S. Environmental Protection Agency Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

Prepared by:

Earth Tech, Inc. 3033 Campus Drive North, Suite 290 Minneapolis, Minnesota 55441

June 2004

TABLE OF CONTENTS

				Page					
EX	ECUT	IVE SL	JMMARY	ES-1					
1.			CTION						
	1.1		ral						
	1.2		se and Objective						
	1.3		Background						
2.	SCC		WORK						
3.	EXI	STING	SLOPE CONDITIONS	3-1					
4.	SUE	SURFA	ACE EXPLORATION	4-1					
	4.1	Field 1	Procedures	4-1					
	4.2	Labor	atory Testing	4-1					
	4.3								
	4.4 Soil Parameters for Stability Analyses4								
5.									
	5.1		dures and Methodology						
	5.2	Stabil	ity of Existing Slopes	5-1					
		5.2.1	Existing Vegetation	5-1					
		5.2.2	Vegetation Removed	5-1					
	5.3	Potent	tial Design Reconfigurations	5-2					
		5.3.1	Uniform 2.0H:1V Angle	5-2					
		5.3.2	Uniform 2.5H:1V Angle	5-2					
		5.3.3	2.3H:1V Angle with Riprap Support	5-2					
6.	SCC	UR AN	ND EROSION PROTECTION	6-1					
7.	CON	ICLUSI	IONS AND RECOMMENDATIONS	7-1					

LIST OF FIGURES

Figure

- 1 Site Plan and Soil Boring Locations
- 2 Typical Existing Slope and Soil Profile
- 3 Recommended Slope Reconfiguration

LIST OF APPENDICES

Appendix

- A Subsurface Data
 - A-1 Soil Classification System
 - A-2 Boring Log Notes
 - A-3 Soil Boring Logs
 - A-4 Laboratory Test Data
- B Slope Stability Analyses Existing Conditions
 - B-1 Typical Data File
 - B-2 Typical Output File
 - B-3 Graphic Presentation of Results
- C Slope Stability Analyses Reconfigurations
 - C-1 Typical Data File
 - C-2 Typical Output File
 - C-3 Graphic Presentation of Results

EXECUTIVE SUMMARY

Granular fill soils contaminated with asbestos containing material (ACM) exist at Gluek Park and extend into the adjacent streambank. Based on site reconnaissance the streambank in this area is approximately 30 feet high with slopes ranging from 30 to 50 degrees. The 30-foot high streambank was noted during the reconnaissance as being unstable, with indications of severe scour and erosion damage from the Mississippi River floodwaters. Numerous slope failures and or sloughs were also noted as a result of the scour/erosion damage. This is exacerbated by the relatively steep slopes.

A total of eight soil borings were drilled and sampled near the top of the streambank for the purpose of defining soil conditions for slope stability analyses. The borings were extended to depths ranging from 30 to 50 feet. Laboratory tests were performed on select samples to better estimate the material properties and to verify soil types that were visually determined during field sampling. Elevation data collected on the slopes at eight cross sectional locations, in combination with the soil data, were used to generate eight soil profiles. These profiles were analyzed for stability for both the existing conditions, as well as possible conditions that could exist following or during remediation of the contaminated soils that exist along the streambank. It should be noted that contaminated soils were noted up to a maximum depth of 20 feet during completion of the borings.

It is concluded based on the existing conditions and slope stability analyses that the current slopes are unstable and likely to regress (or slough) under present conditions (which includes a vegetative support layer). Therefore, any remedial measure aimed at addressing the contaminated soil "in-place" should consider the potential long-term instability of these existing slopes and, thus, the effectiveness of the remedial measure.

Stability analyses were also performed on existing soil profiles, but without inclusion of the vegetative support layer. The results indicate the existing vegetation is providing an important stabilizing effect on the slopes. It is concluded that remediation of contaminated soils by partial removal and subsequent covering with a layer of clean soil will be difficult without removing or greatly disturbing the fairly extensive vegetative cover that currently exists on the slopes. The results clearly indicate that without the existing vegetation in place, even for a short time, slope failures or sloughing would occur at an accelerated rate. Additional slope instability could potentially create a short-term and long-term physical hazard, in addition to risking re-exposure of "covered" contaminated soils as a result of continued slope failures or sloughing.

Cutting the slopes back to a more stable configuration would be a fairly straightforward solution, but could also result in more contaminated soil being removed from the site. A stability analysis on a cutback slope angle of 2H:1V (i.e., 2-ft horizontal for every 1ft-vertical) indicates the reconfigured slope would be borderline stable at this angle. To ensure slope stability, the reconfiguration would require the slope to be cutback to an angle of approximately 2.5H:1V. This would result in a slightly "flatter" slope than one at 2H:1V, but would require more excavation in order to achieve it.

One option that would minimize the amount of soil that needs to be removed from the slope entails ballasting the toe with riprap. The riprap would be placed to a height of approximately 10 to 12 feet, and then the existing slope cutback starting at the top of the riprap could be set at an angle of approximately 2.3H:1V. The riprap would have the added benefit of providing the needed protection against erosion and scour during higher river conditions. A stability analysis on this potential reconfiguration indicates a long-term stable configuration.

1. INTRODUCTION

1.1 General

Waste vermiculite was used in the past to fill portions of Minneapolis' Gluek Park. The vermiculite has been found to contain a form of asbestos called tremolite. Based on the Emergency Response Plan (ERP) for this site, the top 6 inches of soil containing observable vermiculite shall be excavated and disposed off-site at a facility that is licensed to accept asbestos-containing materials (ACM). If vermiculite is observed after six inches, up to an additional 12 inches of soil will be excavated. Following removal of these soils, the excavations shall be restored to original grades using clean fill material, thus covering or isolating any remaining vermiculite and/or soils contaminated with ACM.

A critical feature of the remedial measure involves approximately 550 lineal feet of streambank along the Mississippi River. The streambank slopes are approximately 30 feet high and relatively steep. Existing vegetation on the banks/slopes is currently providing some level of stability, though visual observations indicate the banks have had both recent and past slope failures. In addition, the lower parts of the banks have scour damage from high water conditions of the river. Significant portions of the banks are composed of fill material containing vermiculite.

As indicated above, the existing slopes are relatively unstable. The removal of vegetation and excavation of soil from the banks during a remedial effort will undoubtedly exacerbate the problem. Further slope instability could potentially create a short-term and long-term physical hazard, in addition to risking re-exposure of "covered" contaminated soils as result of a slope failure or slough.

1.2 Purpose and Objective

Earth Tech has performed slope stability analyses on the subject streambank to determine the level or degree at which the existing slopes are unstable, as well as the potential impacts of removing existing vegetation and/or disturbing near surface soils during a remedial effort. Additionally, preliminary slope reconfiguration options were analyzed so that finished slopes could be both stable and compatible with the ERP.

1.3 Site Background

Gluek Park is located at 1926 Marshall Street Northeast in Minneapolis, Minnesota. It encompasses approximately 2.6 acres, including 550 lineal feet along the Mississippi River, as illustrated in Figure 1. The park location was previously the site of a brewery, which has since been demolished and removed from the site. It is believed that contaminated soils were brought to the site to fill low areas sometime after the brewery was demolished. The fill materials originated from nearby Western Mineral Products plant and are contaminated with Tremolite asbestos. Based on information such as the soil borings, partially buried trees and anecdotal information from nearby residents, as much as 20 feet of fill materials were placed at the site.

2. SCOPE OF WORK

In completing this geotechnical analysis report Earth Tech performed the following specific scope of work:

- Surveyed and developed eight cross-sections along the bank.
- Inspected and evaluated the condition of the existing streambank.
- Drilled and sampled eight soil borings along the top of the bank to final depths ranging from 30 to 50 feet.
- Performed field and geotechnical laboratory testing on collect soil samples.
- Evaluated the encountered subsurface conditions relative to slope stability.
- Developed a generalized soil profile at each cross-section location.
- Determined or estimated engineering soil parameters as applicable for slope stability analyses.
- Performed a slope stability analysis for each profile under existing conditions.
- Performed a slope stability analysis for each for the existing profile without vegetation.
- Developed three preliminary slope reconfiguration options.
- Analyzed each of the three slope reconfigurations for mass stability.
- Evaluated and addressed issues related to erosion and scour.
- Summarized conclusions and recommendations.

3. EXISTING SLOPE CONDITIONS

Based on site reconnaissance the streambanks along Gluek Park are approximately 30 feet high with slopes ranging from 30 to 50 degrees. The slope angles are often compounded, with the steeper portion in the lower or bottom one-third. A relatively flat area normally exists between the toe of the slopes and the river or waterline. This flat area is on the order of 10 feet wide and contains river sediments, such as sand, gravel, and cobbles.

The 30-foot high streambank was found to have moderate scour and erosion damage along the toe of slope from Mississippi River floodwaters. Unstable bank conditions observed included the following:

- Undercutting of the streambank by floodwaters along the entire length of Gluek Park with the damage from the undercutting appearing to extend vertically approximately 10 feet, which coincides with the height of the 100-year flood.
- Trees have been undercut; most of which have their root mass exposed or are fallen over.
- Isolated spots/or areas near the toe are standing at nearly a vertical angle due to a recent or past slope failure or the falling over of a significantly sized tree.
- Mass wasting along the bottom of the bank at some points where the undercut banks had sloughed.
- Washout of the park dock.

It is relatively obvious that the slopes are regressing because of scour and erosion, as well as the steepness that the fill soils were placed. Other noteworthy observation while performing the site reconnaissance include the following:

- The surface consists of brown to reddish brown sandy loam soils with numerous small trees and patches of grass.
- In general, the surface of the streambank is uneven with frequent erosion gullies and channels, as well as evidence of past and recent slope failures (or sloughs). The surface also contains trash, rubble, and boulders.
- The slopes contain numerous trees, which appear to be Box Elder and Cottonwood and are typically less than 12 inches in diameter. It is estimated that the average tree diameter is less than six inches. Larger trees that are located in the lower half of the slope tend to lean toward the river, often exposing part of their root system.
- Several pipes (concrete and steel corrugate steel) are protruding from the slope, though not draining water.
- In the northern portion of the site there is a stairway that leads to the river. There is also a flattened area adjacent to the stairway, approximately mid-slope. The flattened area has been stabilized with driven timber piles.

4. SUBSURFACE EXPLORATION

4.1 Field Procedures

A total of eight soil borings were drilled and sampled for this project by Bergerson and Caswell (Maple Plain, Minnesota). The borings were drilled at or near locations that were field staked by Earth Tech. The eight locations are generally evenly spaced along the 550-foot lineal length of the subject bank at Gluek Park, as illustrated on Figure 1.

The borings were extended to depths ranging from 30 to 50 feet with a two-man crew using a truck-mounted CME-75 drill rig. Drilling at each location was initially conducted using Level C protection until the on-site Field Safety Officer from Earth Tech allowed a downgrade to a modified Level C (without respirator) based on a lack of visual evidence that the vermiculite was present. If vermiculite was present or noted, drilling and sampling was conducted in Level C, and the soil cuttings from the boring were damped to minimize the potential for ACM particulates to become airborne.

The borehole was sampled using Standard Penetration Testing (SPT) inside 3¼ inch inside diameter (ID) hollow-stem augers. The augers served as casings as the borehole was advanced and prevented the borehole from caving. Drilling and field sampling were performed according to the following standard specifications.

Sampling with a 2-inch O.D. split-barrel (split-spoon) sampler per ASTM D1586, Standard Penetration Test and Split-Barrel Sample of Soils. A wire-winched hammer was used to advance the sampler into the soil.

The number of hammer blows required to advance the split-spoon sampler 12 inches is referred to as the N-value. N-values were used to estimate the relative density of granular type soils and the consistency of cohesive type soils.

A field log was prepared for each boring during exploration, which included sample depths, soil type, relative moisture or presence of water, soil texture, and blowcounts. Once logged, the samples were sealed in containers to prevent loss of moisture, and transported to a soils lab (STS Consultants, Maple Grove, Minnesota) for further classification and testing. Information obtained on the samples was used to develop final boring logs, which are provided in Appendix A.

Upon completion, the borings were backfilled with a bentonite grout, in accordance with State of Minnesota regulations.

4.2 Laboratory Testing

To further classify the recovered sample and to further determine their engineering properties, the following soil tests were preformed by STS Consultants:

Visual Classification (ASTM D 2487) 29 Moisture Content (ASTM D 2216) 29 Gradation Analysis (ASTM C 136) 8 Percent Fines (ASTM D 1140) 16

The test results are provided in Appendix A, and discussed in Section 4.3 - Subsurface Conditions.

4.3 Subsurface Conditions

The soil profile encountered within the depth of exploration consisted of 13.0 to 20.0 feet of uncontrolled granular silty fill of variable composition. The underlain native soils consist of sand with gravel that generally transitions into a stratum of grayish colored finer-grained soil near the boring termination depths. The following is a summary of the characteristics of each of the soil strata as encountered in the soil borings.

Fill

As indicated above, fill soils were encountered at all eight boring locations (SB1 through SB8). Near the surface, the fill soils tend to be influenced by vegetation growth and erosion, often having a sandy loaming texture. These slightly organic soils generally extended to a depth of less than 3 feet. Beyond the vegetative root zone the fill materials range from brown silty sand (SM) to sandy silt (ML) with variable amounts of gravel, cobbles, and boulders.

The blowcounts, color, as well as the texture of the soils samples collected from the fill were variable. This variation in materials chacteristics is an indication the fill was not placed in a controlled manner (i.e., not compacted lifts). Based on the blowcounts, the fill soils are generally of a medium density, but the presence of many gravel, cobbles, and boulders did in multiple instances artificially increase the sampling resistance (i.e., blowcounts). The fill soils are generally damp to moist.

Based on field/sample interpretations, the thickness of the fill ranged from 13.0 feet in borings SB7 and SB8 to 20.0 feet in boring SB1. However, it should be noted that interpretations were difficult at times since the underlying native material was not always significantly different, nor was there a striking color change between the fill and underlying native soil.

Native Sand with Gravel

The native soils that were encountered below the fill consisted of a brown, damp to wet sand with variable amounts of gravel. Based on visual interpretation and lab testing, these native soils are predominately classified as Poorly Graded Sand with Gravel (SP). Cobbles and boulders were also encountered within this stratum, which is consistent with a river depositional environment. Based on the sampling blowcounts, the density of these granular soils is predominately medium dense to dense. The water table was noted with in this stratum at depths ranging from 28.0 feet to 30.5 feet. Based on the boring elevations (provided on the borings logs), the water table is estimated at elevation 799 feet (NGVD), which is approximately equal to the river level present at the time the borings were completed.

Fine Grained Soils

Seven of the eight soil boring encountered either wet silt to sandy silt (ML), clayey sand (SC), and silty/lean clay (CL-ML, CL) near the termination depths, or more specifically between depths 33.5 feet and 40.5 feet. The grayish color indicates unoxidized conditions usually located below the water table. Blowcounts within the more cohesive (or clayey) soils show a medium to stiff consistency, and the silty soils are loose to medium dense. Boring SB2, which extended to the greatest depth encountered gray stiff lean clay (CL) from approximately 40.0 feet to the boring termination depth of 50.0 feet.

4.4 Soil Parameters for Stability Analyses

Certain soil engineering properties are required for slope stability calculations. These include the unit weight of the soil (γ) and shear strength parameters. The shear strength parameters that are typically used in the calculation include the internal angle of friction (ϕ) for drained soils (e.g., sands, gravels, or consolidated clays), and the cohesion intercept (C) for undrained soils (such as unconsolidated clayey silt and clay). The internal friction angle for granular soils is similar to the steepest angle the soil would prefer to be placed or stand. All three engineering properties can be estimated based on factors such as soil type, density or consistency, knowledge of the depositional environment, moisture content, and grain size characteristics. The following is a discussion of the engineering properties used in the slope stability calculations.

Surfical Soils (3 feet)

The surfical fill soils on the bank are predominately a sandy loam. These near the surface soils are assumed to be loose due to frost action, erosion/deposition, and root penetration. Based on loose sand, the estimated unit weight (γ) and friction angle (ϕ) of the near surface soils are 115 pounds per cubic foot (pcf) and 27 degrees, respectfully.

Though these soils have little or no cohesion, the vegetation root systems are acting in manner that strengthens or provides reinforcement within the root zone. A rather modest cohesion value of 150 pound per square foot (psf) is estimated to reflect the internal shear strength the root systems are providing.

Fill

The underlying fill material is predominately a medium dense silty sand and sandy silt. For a medium dense soil of this type, the internal friction angle typically ranges from 28 degrees to 33 degrees. A low-end friction angle of 29 degrees is estimated and used in the stability analyses based in part on the variable and uncontrolled placement of the fill. Similarly, the estimated unit weight of the fill is 115 pcf. The granular fill material has no appreciable cohesion.

Native Sand with Gravel

The native sand with gravel is poorly graded with a trace to little amounts of silt. Based on the blowcounts the density of this material is typically medium dense. Given the soil type and density, the internal angle of friction would normally range from 30 degrees to 35 degrees. A value of 32 degrees is estimated and used for the slope stability analyses. The estimated unit weight is 125 pcf, which is also based on the soil type and density.

Fine Grained Soils

The soils that underlie the native sand and gravel are fine grained, including sandy silt, clayey sand and lean clay. The non-cohesive silty soils are assumed to have similar properties as the native sand and gravel discussed above. The more cohesive soils e.g., lean clay and clayey sand have a medium to stiff consistency. Based on the consistency, the cohesive fine-grained soils have an assumed cohesion intercept of 1,000 psf with no appreciable internal friction angle (i.e., undrained). The unit weight of the saturated clayey soils is estimated to be 132 pcf.

5. SLOPE STABILITY ANALYSES

5.1 Procedures and Methodology

Slope stability calculations were performed for the existing slopes and several reconfiguration options using the computer program UXTEXAS3. The program was developed for the Army Corp of Engineers by Stephen Wright of the University of Texas. The program allows the user to input a slope profile, material properties for each soil unit, water table elevation, and mode of possible failure (typically circular).

A total of eight cross sections were generated at locations indicated on Figure 1. The soil boring data was then used to develop soil profiles for each of the cross-sections, which are provided in Appendix B (Profiles Nos. 1 through 8).

The engineering properties discussed in the previous section were used as the material properties input data. The stability calculations were performed on these eight profiles, which are provided in Appendix B. A typical or generalized profile also provided on Figure 2. The most critical, or least stable profile (Profile No. 7) was further evaluated for stability for several reconfiguration options.

After several trial runs, it was determined that the exact depth or occurrence of the fine-grained soils that lie under the native sand is of no consequence to the results. Therefore, for simplicity, a medium-strength cohesive layer was assumed to be at a uniform elevation of 788 feet across the site, which is approximately 40 feet below the top of the bank.

5.2 Stability of Existing Slopes

5.2.1 Existing Vegetation

The eight profiles were analyzed for the existing conditions. In these analyses, a vegetation layer was assumed to a depth of 3 feet to model the reinforcement effects the vegetation is having of the stability of the slope. Based on the results, the computed factor of safety against failure for the eight profiles ranged from 0.98 to 1.73. The results are graphically depicted on the profiles provided in Appendix B.

Generally, a factor of safety less than 1.0 indicates imminent failure, whereas a factor of safety of 1.30 is considered the minimum acceptable value for design purposes, although under short-term conditions a factor of safety of less than 1.30 may be considered acceptable. Of the eight profiles analyzed, four of them (Nos. 2, 5, 6, and 7) had computed factors of safety less than 1.30. Of these four, two of the profiles (Nos. 2 and 7) have factors of safety less than 1.20. These results are consistent with the field observation that the slopes of the bank are relatively unstable and likely to continue to regress as a function of time, rainfall/erosion and scour.

5.2.2 Vegetation Removed

The same eight profiles were re-analyzed assuming no vegetation support. One of the methods for remediation being considered is the removal of 6 to 18 inches of soil and placement of the same thickness of clean fill. Because existing vegetation practically covers the slope it would be necessary, at least from a practical standpoint, to remove/or greatly disturb the vegetation during the remedial effort. Also, from a practical standpoint, it would also be very difficult to place a thin layer of clean fill on the rather steep slopes and expect it to "stick" without first removing the existing vegetation and scarifying the subgrade/soil so that the clean fill could effectively bond/interface with the "left in place" soils.

The removal of vegetation was simulated by reducing the cohesion intercept of the vegetation zone soils from 150 psf to 15 psf. All other parameters remained constant. The results indicate factors of safety between 0.66 and 1.47. Of the eight profiles analyzed, five of them (Nos. 2, 4, 5, 6, and 7) had computed factors of safety (against failure) less than 1.0, suggesting imminent failure at these particular cross section locations. Another two profiles (Nos.1 and 8) had computed factors of safety less than 1.10. The results clearly indicate the positive effects that the vegetation is having on the slopes, which are already borderline stable with the vegetation.

5.3 Potential Design Reconfigurations

Based on the above results, the slopes on the streambanks along Gluek Park will need to be stabilized as part of the soil remediation effort/design. One obvious option is to cutback the slope angle to a more stable configuration. However, a significant negative impact associated with cutting back the slope to achieve stability is that excavation would extend deeper and/or further into areas that contain vermiculite, thereby increasing the amount of ACM that would need to be disposed of off-site. Ballasting the toe area with weight (e.g., riprap) would have a positive impact on the stability of the slope and thus reduce the amount of vermiculite and/or ACM-contaminated soil that may need to be removed/cut from the streambanks. To weigh these impacts, several options were evaluated below using soil Profile No. 7, which based on the above analyses is the least stable of the eight profiles.

5.3.1 Uniform 2.0H:1V Angle

Slope profile was cutback to a 2.0H:1V angle and analyzed for stability. A 2-foot vegetation zone was used to simulate at least a minimal amount of soil reinforcement that would occur near the surface soils. But unlike the existing condition, the assumed cohesion for the surfical soils was reduced to 75 psf since the vegetation would not be mature for several years. Otherwise using the same engineering properties as before the computed factor of safety for the 2H:1V reconfiguration is 1.29. A value of 1.29 is slightly below the acceptable minimum value of 1.3. Another consideration is short-term stability of the slopes during the development of the vegetative layer. Initially, without the support of any vegetation the near surface soils would need to stand/hold strictly by their internal angle of friction, which is estimated to be 27 degrees. Coincidently, the reconfigured slope angle is also approximately 27 degrees, so the short-term stability of the surfical soils (i.e., cover soil) would be very marginal and prone to sliding or sloughing during heavy rainfall events. A graphic depiction of this profile and the results is provided in Appendix C.

5.3.2 Uniform 2.5H:1V Angle

Slope Profile No. 7 was cutback to a 2.5H:1V angle and analyzed for stability. The same 2-foot vegetation zone was used as discussed above. At this particular angle the computed factor of safety is 1.59, which is above the minimal acceptable value 1.3. The reduced angle (21 degrees) also makes the surfical soil substantially more stable under short-term conditions (i.e., no vegetation), but the drawback is that more soil would need to be excavated from the slopes. A graphic depiction of reconfigured profile and the results is provided in Appendix C.

5.3.3 2.3H:1V Angle with Riprap Support

A third reconfirmation of Profile No. 7 was developed and analyzed for stability. This particular reconfiguration involves the placement of riprap at or near the water line and stacked at a 1.5H:1V angle to a height of 10 to 12 feet. The existing slope would then be regraded from the top of the riprap at a 2.3H:1V angle. The reconfigured profile was analyzed using the same engineering properties as discussed above. The result indicates a factor of safety against failure of 1.35, which is above the minimum acceptable value of 1.30. A 2.3H:1V angle equates to approximately 22 degrees, were as the estimated internal angle of friction of surface/cover soils is 27 degrees. This

difference suggests the soil would be reasonably stable, unless heavy rainfall and/or erosion events occurred prior to the development of a vegetative cover. In this case, erosion control matting would be prudent to assist the vegetation growth and to provide an added measure of safety against the cover soils from sliding.

Figures

FIGURE 1

Site Plan and Soil Boring Locations

FIGURE 2

Typical Existing Slope and Soil Profile

FIGURE 3

Recommended Slope Reconfiguration

APPENDIX A

Subsurface Data

A-1 Soil Classification System

A-2 Boring Log Notes

A-3 Soil Boring Logs

A-4 Laboratory Test Data

APPENDIX A

Subsurface Data
A-1 Soil Classification System

)

CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

ASTM Designation: D 2487 - 69 AND D 2488 - 69

(Unified Soil Classification System)

Ma	jor divis	ions	Group symbols	Typical names	Classification criteria		
	ction	Clean gravels	GW	Well-graded gravels and gravel-sand mixtures, little or no fines	$C_U = \frac{D60}{D10}$ greater than 4; $C_Z = \frac{(D30)^2}{D10 \times D60}$ between 1 and 3		
	Gravels or more of coarse fraction etained on No. 4 sieve	Clean	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines	Solve the second state of the second		
00 sieve*	Gra or more of etained on	Gravels with fines	GM	Silty gravels, gravel-sand- silt mixtures	Atterberg limits below "A" line or P.I. less than 4 Atterberg limits above "A" line with P.I. Atterberg than 2 cations requiring us of dual symbols		
ined soils ad on No. 2	50% or rete	Gravels v	GC	Clayey gravels, gravel- sand-clay mixtures	Atterberg limits above cations requiring us of dual symbols greater than 7		
Coarse-grained soils 50% retained on No. 200 sieve*	action	Clean sands	SW	Well-graded sands and gra- velly sands, little or no fines	C _U = $\frac{D60}{D10}$ greater than 6. C _U = $\frac{D60}{D10}$ greater than 6. C _Z = $\frac{(D30)^2}{D10 \times D60}$ between 1 and 3 Not meeting both criteria for SW		
More than	Sands 50% of coarse fraction ses No. 4 sieve	Clean	SP	Poorly graded sands and gravelly sands, little or no fines	$C_U = \frac{D60}{D10}$ greater than 6: $C_U = \frac{D60}{D10}$ greater than 6: $C_Z = \frac{(D30)^2}{D10 \times D60}$ between 1 and 3 Not meeting both criteria for SW Not meeting both criteria for SW Atterberg limits below "A" line or P.I. less than 4 The property of the properties of the p		
	Sand More than 50% of passes No.	Sands with fines	SM	Silty sands, sand-silt mix- tures	Atterberg limits below Atterberg limits below Atterberg limits below Atterberg limits ploy than 4 ting in hatched are are borderline classifications, requiring us		
	More	Sands w	sc	Clayey sands, sand-clay mixtures	Atterberg limits above 'A' line with P.I. greater than 7		
	s×	or less	ML	Inorgenic silts, very fine sands, rock flour, silty or clayey fine sands	Plasticity Chart 60 For classification of fine-grained soils and fine fraction of coarse-		
. 0	Silts and clays	limit 50% c	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	grained soils. Atterberg Limits plotting in hatched area are borderline classifications requiring use of		
d soils No. 200 sieve*	S	Liquid	OL	Organic silts and organic silty clays of low plasticity	dual symbols. Equation of A-line: PI = 0.73 (LL - 20)		
graine	87	greater than 50%	МН	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	20 OH and MH		
Fine. 50% or more	Silts and clay	nit greater	СН	Inorganic clays of high plasticity, fat clays	CL ML ML and OL		
	S	Liquid lin	ОН	Organic clays of medium to high plasticity, organic silts	0 10 20 30 40 50 60 70 80 90 100		
	Highly organic soils		Pt	Peat, muck and other highly organic soils	*Based on the material passing the 3 in. (76 mm) sieve.		

APPENDIX A

Subsurface Data
A-2 Boring Log Notes

GENERAL NOTES FOR BORING LOGS

Grain Size Terminology:

Soil Fr	raction	Particle Size	U.S. Sieve Size
Boulder	-0	Largar Than 12"	Larger Than 12"
_	=	Larger Than 12" 3" to 12"	3" to 12"
Cobbles			
Gravel:	Coarse	3/4" to 3"	34" to 3"
	Fine	4.76mm to 3/4"	#4 to ¾"
Sand:	Coarse	2.00mm to 4.76mm	#10 to #4
	Medium	0.42mm to 2.00mm	#40 to #10
	Fine	0.074mm to 0.42mm	#200 to #40
Fines		Less Than 0.074mm	Smaller than #200
Silt		0.005mm to 0.074	Smaller than #200
Clay		Smaller Than 0.005mm	

(Plasticity characteristics differentiate between silt and clay.)

Relative Proportions:

<u>Term</u>	Percentage by Weight
Trace	0% - 5%
Little	5% - 12%
Some	12% - 35%
And	35% - 50%

Relative Density (Cohesionless Soils):

<u>Term</u>	"N" Value	The penetration resistance (blowcount), N, is the summation
Very Loose	0-4	of the number of blows required to advance two successive
Loose	4-10	6" penetrations of the 2" split-barrel (spoon) sampler. The
Medium Dense	10-30	sampler is driven with a 140 lb. weight falling 30" and is
Dense	30-50	seated to a depth of 6" before commencing the standard
Very Dense	Over 50	penetration (ASTM D1586).

Consistency (Cohesive Soils):

Consistency	y (Cohesive Soils):		Plasticity:	
	Unconfined Compressive	"N"	•	
<u>Term</u>	Strength (tons/sq. ft.)	<u>Value</u>	<u>Term</u> P	astic Index
Very Soft	0.0 to 0.25	<2	None to Slight	0-4
Soft	0.25 to 0.50	2-4	Slight	5-7
Medium	0.50 to 1.0	4-8	Medium	8-22
Stiff	1.0 to 2.0	8-15	High to Very High	Over 22
Very Stiff	2.0 to 4.0	15-30		
Hard	Over 4.0	>30		

APPENDIX A

Subsurface Data

A-3 Soil Boring Logs

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 14, 2004

Project No.: 73040

Elevation: 827.5 feet (est)

	Sa	mple	Info	ime	ition	i pr		
No.	Туре	Blows 6	FI.	N	PE	Depth (feet)	⊯ Sõli Description	.Comments
enege side	43.000.63				JA 1357GAWA	0.0	Surface: Grass and Bare Ground/Top of Bank	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
\vdash			_			1.0		
 		<u> </u>	 			1.0		
	- service de la decembra decembra de la decembra decembra de la decembra decembra de la decembra					2.0		
1		3 5	12	13		3.0		
		8	 			3.0	FILL become medium dance City Cond	
						4.0	FILL: brown, medium dense Silty Sand	
							(SM) to Sandy Silt (ML), with Gravel and	
2		5	12	26		5.0	Boulders, fine to coarse grained, damp to moist	
<u> </u>		12 14	-	-	\vdash	6.0	HIVISE	Fines = 22.2%
\vdash	ed-admin	1.4				0.0		
	_					7.0		
3	de la Ha	17	0				pounded on boulder	
<u> </u>	海道縣	22				8.0		
├	被逐渐	29		ļ	-	9.0		
<u> </u>			 			9.0		
4		10	12	17		10.0	higher silt content, moist	MC = 5.6%
		8						Fines = 51.5%
	经一种基	9				11.0		
					—— <u> </u>	12.0		
5		7	12	15		12.0	changing to dark brown/black	
_ ّ	× 47.3	7				13.0	internal grid to dark proving place.	
		8						
						14.0		
	g to the second	- 0	10	20		15.0		MC = 4.7%
6_		8 12	10	30		15.0		MC = 4.7% Gravel+ = 17.1%
		18		\Box		16.0		Fines = 16.5%
						17.0		
7		10 12	12	24		10.0		
-		12				18.0		
	2 2 4 94 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'-		 		19.0		
						20.0		
L								

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 28.0 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Sheet 1 of 2

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 14, 2004 Project No.: 73040

Elevation: 827.5 feet (est.)

	i Sa	mple	info	rina	ition			
No.	Type	Blows	R in.		þþ.	Depth (teet)	. Soil Peseription	Comments-
						20.0		-
						21.0		
						22.0		
						23.0		
8		30	45	<u> </u>		04.0	pounded on possible cobble/boulder	
		22				24.0		
	A.C. 8. 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.					25.0		
						26.0		
						27.0		
						28.0	brown, medium dense Poorly Graded	
9		10	4	13			Sand (SP), fine to coarse grained, some	MC = 15.2%
	A. A.	- 7 - 6				29.0	gravel, trace to little silt, wet	Gravel+ = 13.8% Fines = 5.6%
	100000000000000000000000000000000000000	-				30.0	graver, trade to made only wer	T III 0.0 70
						31.0		
						32.0		
						33.0		
10		7	18	16		34.0		
		9				34.0		
						35.0		
						36.0		
						37.0		
						38.0		
11	100 i	3 4	12	10		39.0	medium dense/loose	
		6						
						40.0	END BORING @ 40.0 FEET	

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" Diameter Split-Spoon DEPTH TO WATER: 28.0 ft (while drilling/sampling) **TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout**

Client:

EPA Region V

Project:

Gluek Park

Location: I

Marshall Street, Minneapolis, MN

Date: April 14, 2004

Project No.: 73040

Elevation: 828.5 feet (est)

	(Sa	mple	infe	rina	tion		Soil Description	Comments .
No.	Туре	Blows		Į,	PP	Depth (inter)		
172 m 1972 ()	100 Car 20 Sept.	NEW WINDS	Cur	\$1=35f2X	ere profes	20.0		
						21.0		
<u> </u>						21.0		
						22.0		
 						23.0		
6		25	0	=			pounded on boulder	
ļ		32 28	 			24.0		
	00000000000000000000000000000000000000	20				25.0		
				ļ		26.0		
						20.0		
						27.0		
<u> </u>		<u> </u>		-		28.0	brown medium dense Deculy Creded	
7	45944	18	6	71			brown, medium dense Poorly Graded Sand (SP), fine to coarse grained, trace to	
!		33 38				29.0	little silt, trace to some gravel, few	
	Colore contractions	- 50				30.0	cobbles/boulders, moist to wet	
 						31.0		
-						31.0		
						32.0		
						33.0		
8		10	8	11				MC = 27.6%
		5 6				34.0		Gravel+ = 26.5% Fines = 9.8%
	17.16.000000					35.0		Fille5 = 9.0 %
						20.0		
						36.0		
						37.0		
						38.0		
9		5	18	12				MC = 17.4%
	1348	5				39.0		Fines = 5.6%
		7	-+			40.0		į

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75
DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 29.5 ft (while drilling/sampling) TERMINATION DEPTH: 50 feet ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 14, 2004

Project No.: 73040

Elevation: 828.5 ft (est)

	Sa	mple	Info	rma	tiön		Söll Description	Comments
No.	Туре	Blows		N	PP.	Depth (feet)		
Takto Chin	12 (7 - Q/APIA)	Die Seranie		TARRES-1	3.0.03422	0.0	Surface: Grass and Bare Ground/Top of Bank	
-						1.0		
							j	ļ
1		2	14	7		2.0		
<u> </u>	112.29	3				3.0		
	77.7	4					Fill: brown, loose to medium dense	
 		-				4.0	Sandy Silt (ML) to Silty Sand (SM), some	
2		13	12	19	 	5.0	Gravel and Rubble (wood, concrete), fine	
	兴州市	14					to coarse grained, damp to moist	}
ļ		·5				6.0	·	
						7.0		l
3	414.5	26	0	==			pounded on concrete rubble (auger	
	2000年 公共 1 66	15 10		L		8.0	cuttings grayish sand)	
	A CLASS BANK	10				9.0		
						10.0		
						11.0		
						12.0		
						13.0		
4		15	6	17				MC = 1.1%
	4 1 3 3 3 4 1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9		-	 	14.0		Fines = 2.5%
	10 司 安德斯	<u></u>				15.0		
							brown, medium dense Poorly Graded	
						16.0	Sand (SP), fine to coarse grained, trace silt and gravel, damp to moist	
	 †			-		17.0	ont and graver, damp to moist	
			-10		-	18.0		NO 500
5		7	12	27		19.0		MC = 5.2 %
		15						
						20.0		

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 29.5 ft (while drilling/sampling) TERMINATION DEPTH: 50 feet ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project: Location: Gluek Park

Marshall Street, Minneapolis, MN

Date: April 14, 2004

Project No. : 73040

Elevation: 828.5 feet (est)

	S	imple	infe	ma	lien		Soil Description	Connens
No.	Type	Blows /6*			PP.	Penn (lee):		
	_					40.0		
						41.0		
10	AS					42.0		
						43.0	Gray LEAN CLAY (CL), wet	
						44.0	•	
					·	45.0		
						46.0		
						47.0		
						48.0		
						49.0		
						50.0	END BORING @ 50.0 FEET	
<u></u>						51.0		
ļ						52.0		
						53.0		
						54.0		
						55.0		
						56.0		
						57.0		
						58.0		
						59.0		
						60.0		

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 29.5 ft (while drilling/sampling) TERMINATION DEPTH: 50 feet

ABANDONMENT METHOD: Grout

Sheet 3 of 3

Client:

EPA Region V

Project: Location: Gluek Park

Marshall Street, Minneapolis, MN

Date: April 15, 2004

Project No.: 73040

Elevation: 831.0 feet (est)

	Sa	mple	nfo	mi			Soil Descriptions	Comments
No.	Type	Blows		N	PP	Depth (feet)		
						0.0	Surface: Grass and Bare Ground/Top of Bank	
						1.0		
\vdash	 		 	 		2.0	Fit I s brown loose to modium done	
1	10000	4	14	7			FILL: brown, loose to medium dense,	
	24	3				3.0	Silty Sand (SM) and Sandy Silt (ML),	
	學學院	4					some gravel, few boulders, damp to	
<u> </u>				<u> </u>		4.0	moist	
	विकासक्षय स्ट				\vdash			
2	編編組 場所認	8 10	12	21		5.0		
	建建筑	11				6.0		
_	G843784370	- ''				0.0		
						7.0	1	
3	***	30	0				no sample recovery	
	7.24	20				8.0		
		22						
 						9.0		
4		2	0			10.0	no sample recovery	
<u> </u>	對對於	2						
<u> </u>	學別別等	3				11.0		
├	 					12.0		
5	1216.30	11	12	80		12.0	pounded on boulder/cobble	
		31	12	- 50		13.0	pourada di Bouradi de Baio	
		49				-,5.5		
	75. 41					14.0		
6		22	_3_	48		15.0		
 		24						
├	相關財	24			\vdash	16.0		
<u> </u>						17.0		
7	45 S. T.	13	6	38	1	17.0		
- '-	## - F	15	-	30		18.0	brown, dense Poorly Graded Sand (SP)	
<u> </u>	Toris.	23				10.0	with Gravel, little silt, damp	
		<u>-</u>				19.0		
			-1					
						20.0		
							<u> </u>	

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling) **TERMINATION DEPTH: 40 feet** ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 15, 2004

Project No. : 73040

Elevation: 831.0 feet (est.)

	/ Se	mple	Infe	int			Soil Description	eonmens -
No.	Туре	Blöws			PP	Depth (leet)		
(AF) (A) (A)	- moral en en en	Adam and the second	2 0 140	Lateral St	# P. O. S.	20.0	The state of the s	Constitution Sections in a section of
<u> </u>			-			21.0		
	ļ						,	
<u> </u>				_		22.0		
 						23.0		!
8	全国的	17	12	49			brown, dense Poorly Graded Sand (SP),	MC = 2.0%
<u> </u>		23	<u> </u>	L		24.0	little gravel, trace to little silt, damp to	Gravel+ = 11.8%
		26	ļ	<u></u>	-	05.0	moist	Fines = 6.2%
<u> </u>						25.0		
├─	<u> </u>		 —		·	26.0		
								
						27.0		
			<u> </u>			28.0		
9		12	12	37	-	20.0		MC = 4.4%
		16	<u>'</u> -	3,		29.0		Fines = 9.5%
		21	 -					
						30.0	encountered boulder while drilling	
			ļ			31.0		
				-		32.0		
			-			32.0		
						33.0		
10	STATE OF THE	15	24	18			same except medium dense and wet	
	経験を	8				34.0		
	数	10	L					
					-	35.0		
						36.0		
\vdash				\vdash	+	30.0		
 -						37.0		
						38.0		
11		3	6	11			Ciby Ol-	MC = 24.1%
	200	5				39.0	gray, medium dense/loose Silty Clayey	Fines = 28.4%
ļ		6	<u> </u>				Sand (SC), wet	
						40.0	END BORING @ 40.0 FEET	
							END BONING W 40.0 FEET	

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D H. SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 15, 2004

Project No.: 73040

Elevation: 829.5 feet (est.)

	· Se	imple	Info	rma	tion		Soil Description comments	
No	Туре	Blows	n	N	PP	Depth (feet)	SOIR DESCRIPTION S. COMMICHISM	
						0.0	Surface: Grass and Bare Ground/Top of Bank	
<u> </u>		 			<u> </u>	4.0	1	
	 	 		_		1.0	-	
	 				 	2.0	1	
1		10	18	27			FILL: brown, medium dense to dense	
	智能的研	12				3.0	Sandy Silt (ML) and Silty Sand (SM) with	
L		15	<u> </u>	<u> </u>			Gravel, few cobbles/boulders, damp to	
<u> </u>		ļ	<u> </u>	<u> </u>		4.0	moist	
2		7	15	28	<u> </u>	5.0	Illoist	
├-		12	۳			5.0	1	ł
		16	-			6.0	1	1
	TENNES : A					7.0		
3	2000年	15	15	28				
		15 13		ļ		8.0	-	
		13		-		9.0	4	
						3.0	1	
4	1024	5	15	23		10.0	1	
		10						
	經濟	13				11.0]	
	1415 Santage		10	24		12.0	-	
5		5 13	12	31	<u> </u>	13.0	1	
		18				10.0	1	ı
	- we story					14.0		
6	美国的	19	18	38		15.0		
	(A) (A)	23						
		15				16.0	1	
						17.0		
7		14	12	39		17.0		ı
	100 (120 A)	15	-14	9		18.0	brown, dense Poorly Graded Sand (SP),	
	4.76.3	24				-,	trace to little silt, trace gravel, damp to	1
						19.0	moist	
					1			J
						20.0		
	1							╝

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 15, 2004 Project No. : 73040

Elevation: 829.5 feet (est.)

	Sa	mple.	nfo	rma	tion		Soil Description	rfeonineiris s
No.	Type	Blows	H	N	PP.	Depth (feet)		
		11, 12, 41 - 12 - 23				20.0		
						21.0		
			_			22.0		
	Transportant	44	12	64		23.0		MC = 2.3%
8_		11 28	12	04		24.0	huanna mana danaa Baarki Guadad Gand	WIC = 2.3 /6
	物类	36				05.0	brown, very dense Poorly Graded Sand (SP), fine to medium grained, little silt,	·
						25.0	damp	
						26.0	·	
						27.0		
	-					28.0		
9		14	12	59		00.0	moist	MC = 7.4% P200 = 6.2%
-		23 36				29.0	·	P200 = 6.2%
	STANDARD CONTRACTOR					30.0		
						31.0	un.	
						32.0		
						33.0		
10		7	8	7		34.0	loose, wet	
		3				34.0		
						35.0		
						36.0		
						37.0		
						38.0		
11	支撑的	6	12	6			increased fines	P200 = 31.8
		3]		0.05	39.0	gray stiff Sandy Loan Clay (CL) wet	MC = 25.2%
	美国的	3			2.25	40.0	gray, stiff Sandy Lean Clay (CL), wet	
							END BORING @ 40.0 FEET	

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet

ABANDONMENT METHOD: Grout

Sheet 2 of 2

Client:

EPA Region V

Project: Location: Gluek Park

Marshall Street, Minneapolis, MN

Date: April 16, 2004 Project No.: 73040

Elevation: 827.5 feet (est.)

	Sample Information ::			Soil Description	Comments"			
No.	Type	Blows	H	N	PP	Depth (feet)		
						0.0	Surface: Grass and Bare Ground/Top of Bank	
-	 -	-	 —	 		1.0		
-	 		 			2.0		
1	272	4	18	24			FILL: brown, medium dense Silty Sand	
	The state of the s	7				3.0	(SM) and Sandy Silt (ML), some gravel,	
	定網幣	17					few cobbles/boulders, trace organics,	
	ļ			ļ		4.0		
2	14404		10	10	 	5.0	damp to moist	
-	3 14 15 15	6 8	18	19	-	3.0	1	
		-11	 -	 	 	6.0		
	110201111111111111111111111111111111111		 	1				
						7.0		
3	1662年	11	12	29				
	77.77	15	ļ		<u> </u>	8.0		
<u> </u>	新建設	14	<u> </u>	<u> </u>	 			
!	 					9.0		
4	772	7	18	30		10.0	-	
		15	· · ·	- 50		10.0		
	强骤涂	15				11.0		
						12.0		
5	CAN TO STATE	12	18	46		10.0	very dense	
<u> </u>	建 克斯克	22		<u> </u>		13.0		
<u> </u>		24		 -		14.0		
 	╂──┤			 		14.0		
6	兴度 建设	30	0			15.0	no recovery, possible boulder/cobble	
	4790	39					· · ·	
	是其前主	37				16.0		
<u> </u>	elland or s					17.0		
7	建 等级。	5	12	33		10.0		
		18 15				18.0	brown, dense Poorly Graded Sand (SP),	
	5.苦心者亦作。	15				19.0	trace silt, damp to moist	
						13.0		
						20.0		

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30.5 ft (while drilling/sampling)

TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Sheet 1 of 2

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 16, 2004

Project No.: 73040

Elevation: 827.5 feet (est.)

	- Sa	mplë	Info	rma	tion		Soil Description	Comments
No.	Турё	Blows /6"	R	N.	PP	Depth (feet)		
, , , , , , , , , , , , , , , , , , ,	goxpac.		100	100.5	HOLIEF X	20.0		
						21.0		
						22.0		
	25222C					23.0	nounded on boulder/eabble	
8		26 50/ ₅	1	<u> </u>		24.0	pounded on boulder/cobble	
	AN TONIAL STATE STATES					25.0		
						26.0		
						27.0		
	mist mineralis					28.0		
9		5 26	18	58		29.0	brown, Poorly Graded Sand (SP) with	MC = 9.9% Gravel+ = 16.1%
		32					Gravel, trace to little silt, moist	Fines = 4.6%
						30.0		
						31.0		
						32.0		
				-		33.0		
10	ESSEZ.	3	4	11			wet	MC = 29.8%
		5 6				34.0		Fines = 7.4%
						35.0		
						36.0		
				_		37.0		
11	442.7	6	2	16		38.0		j
	那份多	8		10		39.0		ļ
	理整外法	8]	40.0	gray, stiff Lean Clay (CL), moist/wet	
						40.0	ENDRORING @ 40.0 FEET	

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stern Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30.5 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Client: EPA Region V Date: April 16, 2004
Project: Gluek Park Project No.: 73040

Location: Marshall Street, Minneapolis, MN Elevation: 827.0 feet (est.)

	Sample information			Soil Description.	Comments			
No.	Туре	Blows	H	Ñ	PP	Depth (feet)		
				,		0.0	Surface: Grass and Bare Ground/Top of Bank	
			ļ	ļ		4.0		
\vdash			ļ	 -		1.0		
						2.0		
1	13 THE REAL PROPERTY.	12	18	41				
ļ	186	20				3.0	FILL: brown, medium dense Poorly	j
 		21				4.0	Graded Sand (SP), Silty Sand (SM), and	
						4.0	Sandy Silt (ML), some Gravel, damp to	
2	新加州	7	18	15		5.0	moist	
	4000	7						
 -	类近类	8	ļ			6.0		
						7.0		
3	i di terre	9	18	22				
ļ	物理性	10				8.0		
 -	76674 8	12				9.0		
						3.0		
4	ants	9	18	18		10.0		MC = 6.7%
		9				44.5		Fines = 57.9%
-	A PORT	9				11.0		
						12.0		
5		18	8	51			changing to dense and very dense,	
	建筑	23				13.0	possibly more gravel/cobbles	
		28				14.0		
						14.0		
6		7	12	47		15.0,		MC = 1.3%
	阿斯斯斯	23						Gravel+ = 22.7%
	美国的	24		}		16.0		Fines = 6.8%
						17.0		
7	EATE S	11	18	40				
	原建設	21				18.0		
	海線等	19	Ţ			40 =	brown Poorly Graded Sand (SP) with	4" layer of Clayey
						19.0	Gravel, moist	Sand @ 18.5 feet
			-+			20.0	जावरहा, माणंडर	

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 28.5 ft (while drilling/sampling) TERMINATION DEPTH: 35 feet

TERMINATION DEPTH: 35 feet ABANDONMENT METHOD: Grout

Sheet 1 of 2

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 16, 2004

Project No.: 73040

Elevation: 827.0 feet (est.)

Type	ents.
20.0 21.0 22.0 22.0 23.0 23.0 23.0 24.0 25.0 25.0 26.0 27.0 26.0 27.0 28.0	
8	
MC =	
NC = MC MC MC MC MC MC MC	
31	1 7%
33	1.7 /0
26.0 27.0 28.0 28.0 29.0 29.0 30.0 31.0 32.0 33.0 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 34.0 4 4 34.0 4 4 34.0 4 4 4 4 4 4 4 4 4	i
12 12 34 29.0 Brown, medium dense to dense, Poorly Graded Sand with Gravel (SP), trace silt, moist to wet 31.0 32.0 33.0 10 10 3 8 34.0 dark grayish brown, loose/medium stiff	
12 12 34 29.0 Brown, medium dense to dense, Poorly Graded Sand with Gravel (SP), trace silt, moist to wet 31.0 32.0 33.0 10 10 3 8 34.0 dark grayish brown, loose/medium stiff	
9	į
9	
9	
18 30.0 Graded Sand with Gravel (SP), trace silt, moist to wet	12.9%
30.0 moist to wet 31.0 32.0 10 10 3 8 4 34.0 dark grayish brown, loose/medium stiff	= 2.9%
31.0 32.0 33.0 10 10 3 8 4 34.0 dark grayish brown, loose/medium stiff	
32.0 33.0 10 10 3 8 34 34.0 dark grayish brown, loose/medium stiff	
10	
10	
10 3 8 34.0 dark grayish brown, loose/medium stiff	1
4 34.0 dark grayish brown, loose/medium stiff	
dark grayish brown, loose/medium stiff	
	1
average at 20 F most	
36.0auger refusal at 36.5 reet	
37.0 End Boring @ 36.5 Feet	
38.0	
39.0	ļ
40.0	Ì

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY; D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 28.5 ft (while drilling/sampling) **TERMINATION DEPTH: 35 feet** ABANDONMENT METHOD: Grout

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Boiling No. 3B-7

Date: April 19, 2004

Project No.: 73040

Elevation: 828.0 feet (est.)

	S	mple	Info	rma	tion			
2	Туре	Blows /6"	Train !	N	PP	Deptii (feet)	Soil Description	s Comments :
						0.0	Surface: Grass and Bare Ground/Top of Bank	
						1.0		}
			 			1.0		
						2.0		
		4	18	31				
		10		<u> </u>		3.0		
		21				4.0	FILL: dark brown to brown, medium	
						4.0	dense Silty Sand (SM) and Sandy Silt	
2		4	18	17		5.0	(ML), damp to moist	
		8						
		9				6.0		
3		9	18	24		7.0		MC = 5.6%
		12	10			8.0		Fines = 36.6%
		12		-		0.0		
	COLUMN DESCRIPTION OF THE PERSON OF THE PERS					9.0	•	
4	建	5	18	18		10.0		MC = 4.1%
\vdash		9				44.0]
		9				11.0	•	
						12.0		
5	10.5	3	18	13		12.0		
	注意多数	5				13.0		
	200	8						
						14.0	brown, medium dense Poorly Graded	
	AT DATES A		10	25		15.0	Sand (SP) with Gravel (SP), trace to little	
6		5 11	18	25			silt, moist	
		14				16.0		
	- CAMPING STATE							
						17.0		
7	相的越	16	12	72				MC = 1.8%
	2560	36				18.0		Gravel+ = 47.0%
		36				19.0		Fines = 6.2%
						20.0		

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 29.5 ft (while drilling/sampling)

TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Sheet 1 of 2

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 19, 2004

Project No.: 73040

Elevation: 828.0 feet (est.)

	Sa	mple	Into	ima	tion		SollDescription	acomments:
No.	ilype	Blows 6"			PP	然(feet)	Delicoescupitalis	
 			<u> </u>	-		20.0		
						21.0		
						22.0		
	TANK THE PARTY.					23.0		
8		24 33	12	71		24.0	l	
		38				25.0	brown, medium dense Poorly Graded Sand with Gravel, trace to little silt, moist	
						26.0		
						27.0		
	Will Service and					28.0	form amost largers of along most	
9		17 10	12	18		29.0	few small layers of clay, wet	
		8				30.0		
						31.0		
						32.0		
	Our VS Contract C					33.0	dada barran arak	
10		9	24	21		34.0	dark brown, wet	MC ≈ 13.3% Fines = 10.9%
		12				35.0		
						36.0		
						37.0		
	S-101 - 100 - 200					38.0	dark gray layers of stiff/loose Clayey	NO 47 224
11		11	24	17		39.0	Sand (SC) and Sandy Silt (ML), wet	MC = 47.6% Fines = 29.6%
		7				40.0	END BORING @ 40.0 FEET	

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 29.5 ft (while drilling/sampling)

TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Sheet 2 of 2

Client:

EPA Region V

Project:

Gluek Park

Location:

Marshall Street, Minneapolis, MN

Date: April 19, 2004

Project No.: 73040

Elevation: 828.5 feet (est.)

	Sá	mple	Info	rma	tion		Soil Description	Comments
No	Type	Blows 67		Ň	P	Depth. ((eet)		
						0.0		
ļ]
				\vdash	 -	1.0		
					<u> </u>	2.0		
1		2	18	5				
		2				3.0	FILL: brown, loose to medium dense	
		3	\vdash			4.0	Sandy Silt (ML) to Silty Sand (SM), moist	concrete rubble noted
				ļ		4.0	Sandy Sitt (ME) to Sitty Sand (Sitt), moist	at approx. 5 feet
2		2	12	5		5.0		while drilling
	新疆鄉	2						
		3				6.0		
						7.0		
3		4	18	15		7.0		MC = 8.6
		7				8.0		Fines = 51.2%
	3346	8						
						9.0		
4		4	8	13		10.0		
	200	7	Ť	,,,		70.0		
		6				11.0		
						- 10 0		
5		7	18	17		12.0		
۲	200	7	-10	''		13.0		
		10						
						14.0	brown, medium dense Poorly Graded	
	restances areas on		40	00		45.0	Sand with Gravel (SP), trace silt, damp	140 1 49/
6		12 14	12	28		15.0		MC = 1.4% Gravel+ = 41.3%
		14				16.0		Fines = 4.7%
						17.0		
7		12	18	66		10.0		MC = 2.4%
\vdash		31 35				18.0		
		35				19.0		
						20.0		

DRILLED BY: Bergerson and Caswell

DRILL RIG: CME-75

DRILL METHOD: 3-1/4" (ID) Hollow Stern Augers

LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling)

TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

Sheet 1 of 2

Client:

EPA Region V

Project: Location:

Gluek Park

Marshall Street, Minneapolis, MN

Date: April 19, 2004

Project No.: 73040

Elevation: 828.5 feet (est.)

Type Pick 16		‡' Sa	mple	info	rma	tion		Soll Description	Comments
	No.	Type	Blown		N	PP	1. Carlotte 1. Car		
8	881892			152,1197	isteration of the	24-24512-20		En den betre de de de de la marchitecture de la section de	Of the second of the second is a product or many to be second in the second in
Solution	ļ						21.0		
8							22.0		
21							23.0		İ
22	8			18	43		24.0	brown, medium dense Poorly Graded	
				_	 	-	24.0	Sand with Gravel (SP), trace silt, moist to	
10 27.0 28.0 9 5 1 16 29.0		Page Her Cons. (2)					25.0		
9							26.0		
9							27.0		
6 29.0 10 30.0wet 31.0 32.0 33.0 10 6 18 21 33.0 10 6 18 21 35.0 browish gray, medium dense/stiff Clayey Silt (ML-CL), few sand seams, wet 11 25 0 - 33.0 11 25 0 - 39.0no recovery, pounded on possible		ANG IS SOME			10		28.0		
10	9				16		29.0		
30.0wet 31.0wet 31.0wet 32.0wet 32.0wet 32.0wet 32.0wet 33.0wet 33.0wet 33.0wet 33.0wet 33.0wet MC = 22.0		9780		\vdash			23.0		
32.0 33.0 10 6 18 21 34.0 35.0 5 13 5 0 5 5 0 - 30 5 0 - 30 5 0 -							30.0	wet	
10							31.0		
10 6 18 21							32.0		
10 6 18 21			-				33.0		
13			6	18	21				
35.0 browish gray, medium dense/stiff Clayey Silt (ML-CL), few sand seams, wet 37.0 37.0 38.0 11 25 0 39.0no recovery, pounded on possible							34.0		MC = 22.0%
36.0 37.0 38.0 11 25 0 39.0no recovery, pounded on possible			13				35.0		Fines = 72.2
37.0 38.0 11 25 0 39.0no recovery, pounded on possible							36.0	SHE (MIL-CL), TEW SAND SEAMS, WEE	
38.0 11 25 0 39.0no recovery, pounded on possible				$\vdash \vdash \vdash$			30.0		
11 25 0 39.0no recovery, pounded on possible							37.0		
11 25 0 39.0no recovery, pounded on possible							38.0		
	11	W-1.7	25	0					
I to to state or to the terminal throughout the sugar cuttings. □							39.0		
			35				40.5	boulder, Silt auger cuttings	
40.0 END BORING @ 40.0 FEET							40.0	END BORING @ 40.0 FEET	

DRILLED BY: Bergerson and Caswell DRILL RIG: CME-75 DRILL METHOD: 3-1/4" (ID) Hollow Stem Augers LOGGED BY: D.H.

SAMPLING METHOD: 2" diameter Split-Spoon DEPTH TO WATER: 30 ft (while drilling/sampling) TERMINATION DEPTH: 40 feet ABANDONMENT METHOD: Grout

APPENDIX A

Subsurface Data
A-4 Laboratory Test Data

STS CONSULTANTS, LTD. TRANSMITTAL

Steven J. Ruesink, P.E.

10900 - 73rd Ave. N., Suite 150 Maple Grove, MN 55369-5547 763/315-6300 FAX 763/315-1836

To: <u>Ea</u>	rth Tech, Inc. 33 Campus Drive		Date: 4/30/04	STS Project aterials – Gluek Park	
<u>30</u> Pl\	mouth, MN 55441		Minneapolis, I		
Attn: Mr	. Jerry Canfield				
<u>jerr</u>	y.canfield@earthtech.co	<u>m</u>			
We are se	nding the following ite	em(s):			
	Boring Logs		posal/Report		Specification
	Change Order	Rep	pair Documents	X	Test Resul
	Copy of Letter Plans		nples		Field Repo
	Plans	Sho	op Drawings		Other
Copies	Date	Number		Description	
1	4/27/04			Summary of Analysis	
				Gradation Analysis Te	st Analysis
					
Remarks	·				
					
					·
Copy to:	Mr. Rollie Boehm -	Earth Tech			
• •	Rollie.boehm@eartl				
	Mr. Pogor Clay Eo	orth Toch			
	Mr. Roger Clay – Ea Roger.clay@earthte				
				\int_{Ω}	
				W) .
		91	TS Panrasantativa	1 Lines	

D699482-1 temp.doc

Visual Classification ASTM D2488 P-200 ASTM C-117 Moisture (%) ASTM D2216

STS Consultants Ltd. **Consulting Engineers**

Laboratory Services Group

10900 73rd Avenue, Suite 150 Maple Grove, MN 55369

Phone:763/315-6300 Fax: 763-315-1836

Project Name:

Western Mineral - Gluek Park

STS Project No.: 99482

Location:

Minneapolis, MN

Date:

27-Apr-04

Boring / Sample	Depth	Classification	P200 (%) Fines	Moisture (%) As received
B-1;S-2	5-6.5'	Brown fine to coarse sand, little gravel, little silt (SM)	22.2	3.1
B-1;S-4	10-11.5'	Brown sandy silt, trace gravel - (SM)	51.5	5.6
B-1;S-6	15-16.5'	Brown fine to coarse sand with gravel, little silt - (SM)		4.7
B-1;S-9	28.5-30'	Brown fine to coarse sand with gravel, little silt - (SP-SM)		15.2
B-2;S-4	13.5-15'	Brown fine to coarse sand, trace silt, trace gravel - (SP)	2.5	1.1
B-2;S-5	18.5-20'	Brown fine to coarse sand, trace silt, trace gravel - (SP)		5.2
B-2;S-8	33.5-35'	Dark grayish brown fine to coarse sand, little silt, trace gravel (SP-SM)		27.6
B-2;S-9	38.5-40'	Brown fine to coarse sand, trace silt, trace gravel - (SP)	5.6	17.4
B-3;S-8	23.5-25	Brown fine to coarse sand with gravel, trace sitt - (SP-SM)		2
B-3;S-9	28.5-30'	Brown fine to coarse sand with gravel, trace silt - (SP-SM)	9.5	4.4
B-3;S-11	28.5-30'	Dark brown fine to coarse sand, some silt, little gravel - (SM)	28.4	24.1
B-4;S-8	23.5-25'	Brown fine to coarse sand, trace silt, trace gravel - (SP)		2.3
B-4;S-9	28.5-30*	Brown layers of fine to coarse sand, trace silt, trace gravel, trace clay - (SP-SM)	6.2	7.4
B-4;S-11	38.5-40	Very dark grayish brown clayey sill, trace sand and gravel, organic traces (ML)	31.8	25.2
B-5;S-9	28.5-30'	Brown fine to coarse sand with gravel, trace silt - (SP)		9.9
B-5;S-10	33.5-35'	Dark brown fine to coarse sand, trace to little silt with gravel, trace fill (SP-SM)	7.4	29.8

Visual Classification ASTM D2488 P-200 ASTM C-117 Moisture (%) ASTM D2216

Laboratory Services Group

10900 73rd Avenue, Suite 150 Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

Project Name:

Western Mineral - Gluek Park

STS Project No.: 99482

Location:

Minneapolis, MN

Date:

27-Apr-04

Boring / Sample	Depth	Classification	P200 (%) Fines	Moisture (%) As received
	= =			
B-6;S-4	10-11.5'	Brown clayey silt, trace gravel, trace cinder(fill) - (SM)	57.9	6.7
B-6;S-6	15-16.5'	Brown fine to coarse sand with gravel, trace silt - (SP-SM)		1.3
B-6;S-8	23.5-25'	Brown fine to coarse sand, some gravel, trace silt - (SP)		1.7
B-6;S-9	28.5-30'	Brown fine to coarse sand, trace silt, trace gravel - (SP)	2.9	12.9
B-7;S-3	7.5-9'	Brown silty sand, trace gravel, trace fill - (SM)	36.6	5.6
B-7;S-4	10-11.5'	Brown silty sand with gravel, trace cinder (fill) - (SM)		4.1
B-7;S-7	17.5-19'	Brown fine to coarse sand with gravel, trace silt - (SP-SM)		1.8
B-7;S-10	33.5-35'	Dark brown layers of clayey silt and silty sand, organic traces - (ML-SC)	10.9	13.3
B-7;S-11	38.5-40'	Dark gray layers of clayey fine sand and silty sand - (SM)	29.6	47.6
B-8;S-3	7.5-9	Brown Sandy Silt - (ML)	51.2	8.6
B-8;S-6	15-16.5'	Brown fine to coarse sand, little gravel, trace sitt - (SP)		1.4
B-8;S-7	17.5-19	Brown fine to coarse sand, trace silt, trace gravel - (SP)		2.4
B-8;S-10	33.5-35'	Light brownish gray clayey silt, trace sand - (ML-CL)	72.2	22.0

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150

Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-1

Sample:

S-6

Classification/Description:

Brown fine to coarse sand, little gravel, little silt - SM

Sieve Size	Percent Passing	
		-
1"	100	
3/4"	94.7	
5/8"	90.9	
3/8"	88.1	
#4	82.9	
#8	77.5	
#10	75.9	
#20	66.2	
#40	42.9	
#80	19.2	
#200	16.5	

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150

Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-1

Sample:

S-9

Classification/Description:

Brown fine to coarse sand, with gravel, little silt (SP-SM)

Sieve Size	Percent Passing	
1"		
3/4"		
5/8"	100	
3/8"	89.9	
#4	86.2	
#8	80.5	
#10	78.5	
#20	65.2	
#40	37.3	
#80	8.4	
#200	5.6	

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150 Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-2

Sample:

S-8

Classification/Description:

Dark grayish brown fine to coarse sand, little silt, trace gravel - (SP-SM)

Sieve Size	Percent Passing	
1"	100	
3/4"	95.5	
5/8"	89.6	
3/8"	81.7	
#4	73.5	
#8	64.1	
#10	61.8	
#20	49.3	
#40	35.3	
#80	17.8	
#200	9.8	

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150

Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-3

Sample:

S-8

Classification/Description:

Brown fine to coarse sand with gravel, trace silt - (SP-SM)

Sieve Size	Percent Passing	
1"		
3/4"		
5/8"	100	
3/8"	96.6	
#4	88.2	
#8	78.0	
#10	75.5	
#20	58.7	
#40	33.9	
#80	9.3	
#200	6.2	

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150

Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-5

Sample:

S-9

Classification/Description:

Brown fine to coarse sand with gravel, trace silt - (SP)

Sieve Size	Percent Passing	
1"		
3/4"		
5/8"	96.3	
3/8"	92.1	
#4	83.9	
#8	76.1	
#10	74.3	
#20	62.2	
#40	38.8	
#80	10.0	
#200	4.6	

GRADATION ANALYSIS
ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150

Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-6

Sample:

S-6

Classification/Description:

Brown fine to coarse sand with gravel, trace silt - (SP-SM)

Sieve Size	re Size Percent Passing	
1"	100	
3/4"	95.1	
5/8"	88.3	
3/8"	86.1	
#4	77.3	
#8	67.4	
#10	64.8	
#20	48.6	
#40	25.7	
#80	10.0	
#200	6.8	

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150 Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-7

Sample:

S-7

Classification/Description:

Brown fine to coarse sand with gravel, trace silt - (SP-SM)

Summary of Test Results

Sieve Size	Percent Passing
1"	100
3/4"	94.9
3/8"	76.3
#4	63.0
#8	48.7
#10	45.5
#20	30.1
#40	18.9
#80	9.7
#200	6.2

GRADATION ANALYSIS ASTM C136

Laboratory Services Group

10900 73rd Avenue, Suite 150 Maple Grove, MN 55369

Phone: 763/315-6300 Fax: 763-315-1836

STS Project No.: 99482

Project Name:

Western Minerals - Gluek Park

Location:

Minneapolis, MN

Date:

April 27, 2004

Boring

B-8 S-6

Sample:

Classification/Description:

Brown fine to coarse sand, little gravel, trace silt - (SP)

Sieve Size	Percent Passing	
1"	001	
3/4"	78.3	
5/8"	76.8	
3/8"	68	
#4	58.7	
#8	48.8	
#10	46	
#20	31.8	
#40	18.5	
#80	7.8	
#200	4.7	

APPENDIX B

Slope Stability Analyses – Existing Conditions

- **B-1** Typical Data File
- **B-2** Typical Output File
- **B-3** Graphic Presentation of Results

APPENDIX B

Slope Stability Analyses – Existing Conditions

B-1 Typical Data File

```
HEADING
  Gluek Park Remediation
  profile #1 - Existing Slope with Vegetation
  May 20, 2004
PROFILE LINES
  1 1 Surface/Vegetated
  -10.00
           799.00
    0.00
           799.77
   21.58
           812.64
   49.09
           827.27
   71.01
           828.01
  150.00
           828.01
  2 2 Fill
    21.58
          809.64
    49.09
           824.27
    71.01
           825.01
   150.00
          828.01
  3 3 Top of Native Sand
  -50.00
          799.00
          796.77
   0.00
   21.58
          809.64
          812.01
  150.00
  4 4 Top of Native Clay
  -50.00
          788.00
   0.00
          788.00
  150.00
          788.00
MATERIAL PROPERTIES
   1 VEGETATED SURFICAL SOILS
  115 = UNIT WEIGHT
  CONVENTIONAL SHEAR STRENGTH
   150 27
  NO PORE PRESSURE
  2 EXISTING FILL SOILS
  115 = UNIT WEIGHT
  CONVENTIONAL SHEAR STRENGTH
   0 29
  NO PORE PRESSUE
  3
       NATIVE GRANULAR SOILS
  125 = UNIT WEIGHT
  CONVENTIONAL SHEAR STRENGTH
  0
     32
  PIEZOMETRIC LINE
   1
        NATIVE CLAY
  132 = UNIT WEIGHT
  CONVENTIONAL SHEAR STRENGTH
  1000
        0
  PIEZOMETRIC LINE
   1
  PIEZOMETERIC LINE DATA
  1
       62.4
              WATER TABLE
  -50
       799
  150 799
```

ANALYSIS/COMPUTATIONS
CIRCULAR SEARCH
50 855 2.0 0
POINT
0.00 799.77
SUBTENDED
6
SHORT
PROCEDURE
SPENCER

COMPUTE

APPENDIX B

Slope Stability Analyses – Existing Conditions

B-2 Typical Output File

1

GPEX1.OUT UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat

* RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER *
PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY *
HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL *
DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE *
ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER *
PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS *
PROGRAM BEFORE ATTEMPTING ITS USE.

* NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT * MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR * IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS * OR ADAPTABILITY OF THIS COMPUTER PROGRAM.

UTEXAS3 - VER. 1.107 - 10/13/91 - (c) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat Gluek Park Remediation Profile #1 - Existing Slope with Vegetation May 20, 2004

PROFILE LINE 1 - MATERIAL TYPE = 1 Surface/Vegetated

Point	X	Υ
1	-10.000	799.000
2	.000	799.770
3	21.580	812.640
4	49.090	827.270
5	71.010	828.010
6	150.000	828.010

PROFILE LINE 2 - MATERIAL TYPE = 2

Point	X	Y
1	21.580	809.640
2	49.090	824.270
3	71.010	825.010
4	150.000	828.010

```
PROFILE LINE 3 - MATERIAL TYPE = 3
Top of Native Sand
     Point
                            799.000
               -50.000
       1
                 .000
                             796.770
       2
                21.580
                             809.640
       3
       4
               150.000
                             812.010
PROFILE LINE 4 - MATERIAL TYPE = 4
Top of Native Clay
     Point
               Х
                             Υ
       1
               -50.000
                             788.000
                  .000
                             788.000
               150.000
                             788.000
       3
All new profile lines defined - No old lines retained
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
TABLE NO.
*******************
* NEW MATERIAL PROPERTY DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS *
***************
DATA FOR MATERIAL TYPE 1
VEGETATED SURFICAL SOILS
     Unit weight of material = 115.000
     CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
                                 150.000
     Cohesion - - - -
     Friction angle - - - - 27.000 degrees
     No (or zero) pore water pressures
DATA FOR MATERIAL TYPE 2
EXISTING FILL SOILS
     Unit weight of material = 115.000
     CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
    Cohesion - - - - - - - Friction angle - - - -
                              29.000 degrees
    No (or zero) pore water pressures
DATA FOR MATERIAL TYPE 3
NATIVE GRANULAR SOILS
    Unit weight of material = 125.000
    CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
    Cohesion - - - - - - -
                                    .000
    Friction angle - - - - 32.000 degrees
    Pore water pressures defined by piezometric line
                            Page 2
```

1

GPEX1.OUT

```
Number of the piezometric line used = 1
              Negative pore pressures set to zero
         DATA FOR MATERIAL TYPE 4
         NATIVE CLAY
              Unit weight of material = 132.000
              CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
                                          1000.000
              Cohesion - - - - - - -
              Friction angle - - - -
                                          .000 degrees
              Pore water pressures defined by piezometric line
              Number of the piezometric line used = 1
              Negative pore pressures set to zero
         All new material properties defined - No old data retained UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
1
         Date: 5:27:2004
                           Time: 10:32:43 Input file: GPEX1.dat
           Gluek Park Remediation
           Profile #1 - Existing Slope with Vegetation
           May 20, 2004
         TABLE NO.
         **************
         * NEW PIEZOMETRIC LINE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS *
         ***********
         Line
          No.
                 Point
                            Х
           1 - Unit weight of water =
                                       62.40
                                               WATER TABLE
                                      799.000
                          -50.000
                                               WATER TABLE
           1
                    1
                          150.000
                                      799.000
                                               WATER TABLE
         All new piezometric lines defined - No old lines retained UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
         Date: 5:27:2004 Time: 10:32:43
                                           Input file: GPEX1.dat
           Gluek Park Remediation
           Profile #1 - Existing Slope with Vegetation
           May 20, 2004
         TABLE NO. 15
         ******
         * NEW ANALYSIS/COMPUTATION DATA *
         ********
         Circular Shear Surface(s)
         Automatic Search Performed
         Starting Center Coordinate for Search at -
                                                              50.000
                                                     X =
                                                             855.000
         Required accuracy for critical center (= minimum
         spacing between grid points) =
         Critical shear surface not allowed to pass below Y =
                                                                    .000
         For the initial mode of search
         all circles pass through the point at -
                                                                .000
                                                     X =
```

Page 3

1

GPEX1.OUT

Maximum subtended angle to be used for subdivision of the circle into slices = 6.00 degrees

Short form of output will be used for search

Procedure used to compute the factor of safety: SPENCER

THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES:

Initial trial estimate for the factor of safety = 3.000

Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only)

Maximum number of iterations allowed for calculating the factor of safety = 40

Allowed force imbalance for convergence = 100.000

Allowed moment imbalance for convergence = 100.000

Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be kept constant during search

Depth of crack = .000

Search will be continued to locate a more critical shear surface (if one exists) after the initial mode is complete

Depth of water in crack = .000

Unit weight of water in crack = 62.400

Seismic coefficient = .000

Conventional (single-stage) computations to be performed UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat Gluek Park Remediation Profile #1 - Existing Slope with Vegetation May 20, 2004

NOTE - NO DATA WERE INPUT, SLOPE GEOMETRY DATA WERE GENERATED BY THE PROGRAM

Slope Coordinates -

1

Point	X	Y
1 2 3 4 5 6	-50.000 -10.000 .000 21.580 49.090 71.010	799.000 799.000 799.770 812.640 827.270 828.010 Page 4

```
GPEX1.OUT
                         828.010
              150.000
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
       5:27:2004
                  Time: 10:32:43
                                   Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
TABLE NO. 20
****************
* SHORT-FORM TABLE FOR SEARCH WITH CIRCULAR SHEAR SURFACES *
***************
                   Center Coordinates of
                      Critical Circle
                                                      Factor
                                                               Side
                                                       of
                                                              Force
                                                     Safety
Mode
                          Х
                                     Υ
                                             Radius
                                                             Inclin.
   Fixed Point at
                       -20.000
                                  903.000
                                             105.150
                                                       1.301
                                                               24.78
    X =
              799.8
   Tangent Line
                       -20.000
                                  903.000
                                             105.150
                                                       1.301
                                                               24.78
              797.9
    at Y =
TABLE NO. 21
                                                 ***
      1-STAGE FINAL CRITICAL CIRCLE INFORMATION
X Coordinate of Center - - - - -
                                       -20.000
Y Coordinate of Center - - - - -
                                       903.000
                - - - - - - - -
                                       105.150
Factor of Safety - - - - - - -
                                        1.301
Side Force Inclination - - - - - -
                                         24.78
Number of circles tried - - - - -
No. of circles F calc. for - - - -
                                       46
**** CAUTION **** FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME
                   OF GRID POINTS AROUND THE MINIMUM
***** RESULTS MAY BE ERRONEOUS *****
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat
 Gluek Park Remediation
 Profile #1 - Existing Slope with Vegetation
 May 20, 2004
TABLE NO. 26
**************
  Coordinate, Weight, Strength and Pore Water Pressure
Information for Individual Slices for Conventional
Computations or First Stage of Multi-Stage Computations.
   (Information is for the Critical Shear Surface in the
  Case of an Automatic Search.)
***************
Slice
                         Slice
                                 Matl.
                                                  Friction
                                                              Pore
                                                    Angle
 No.
         Х
                  Υ
                         Weight
                                 Type
                                        Cohesion
                                                            Pressure
                799.8
          .0
         4.2
                800.8
                          1437.4
                                          150.00
  1
                                    1
                                                    27.00
                                                                  .0
```

1

1

Page 5

3

3

.00

.00

32.00

32.00

.0

.0

5360.5

2015.3

8.3

13.5

18.8

20.2

21.6

2

3

801.7

803.5

805.3

805.8

806.4

```
GPEX1.OUT
   4
                  808.1
                             5315.2
                                       3
                                                 .00
                                                         32.00
                                                                        .0
          25.1
                  809.8
          28.6
   5
          33.4
                  812.6
815.4
                             6912.5
                                       2
                                                 .00
                                                                        .0
                                                         29.00
          38.1
                  818.6
   6
          42.5
                                       2
                             5225.8
                                                 .00
                                                         29.00
                                                                        .0
          46.9
                  821.9
   7
          48.0
                  822.8
                              954.3
                                       2
                                                 .00
                                                         29.00
                                                                        .0
          49.1
                  823.7
   8
                  824.0
                              238.1
                                       2
          49.4
                                                 .00
                                                         29.00
                                                                        .0
          49.7
                  824.3
          51.4
                              580.3
   9
                  825.8
                                       1
                                              150.00
                                                         27.00
                                                                        .0
53.1 827.4
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
      5:27:2004
                    Time: 10:32:43
                                      Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
TABLE NO. 27
   Seismic Forces and Forces Due to Surface Pressures for
   Individual Slices for Conventional Computations or the First Stage of Multi-Stage Computations.

(Information is for the Critical Shear Surface in the
* Case of an Automatic Search.) *
                                       FORCES DUE TO SURFACE PRESSURES
                           Y for
                           Seismic
Slice
                                      Normal
                Seismic
                                                Shear
  No.
          Х
                 Force
                           Force
                                      Force
                                                Force
                                                            Х
                                                                      Υ
                              801.5
                                                                        .0
          4.2
                     0.
                                          0.
                                                    0.
                                                            . .0
   2
3
                              805.6
                                          0.
         13.5
                                                    0.
                     0.
                                                              .0
                                                                        .0
         20.2
                     0.
                              808.8
                                          0.
                                                    0.
                                                              .0
                                                                        .0
         25.1
   4
                     0.
                              811.3
                                          0.
                                                    0.
                                                              .0
                                                                        .0
   5
                              815.7
                                                                        .0
          33.4
                     0.
                                          0.
                                                    0.
                                                              .0
                                          0.
   6
                              821.2
         42.5
                     0.
                                                    0.
                                                              .0
                                                                        .0
                             824.8
   7
         48.0
                     0.
                                          0.
                                                    0.
                                                              .0
                                                                       .0
   8
         49.4
                     0.
                              825.6
                                          0.
                                                    0.
                                                              .0
                                                                       .0
9 51.4 0. 826.6 0. 0. .0
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
                                                              .0
                                                                       .0
Date: 5:27:2004
                    Time: 10:32:43
                                      Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
TABLE NO. 29
        Information Generated During Iterative Solution for the Factor
* of Safety and Side Force Inclination by Spencer's Procedure *
                   Trial
        Trial
                 Side Force
                                           Moment
       Factor
                                Force
                                                                  Delta
                             Imbalance
Iter-
         of
                Inclination
                                         Imbalance
                                                      Delta-F
                                                                  Theta
       Safety
ation
                 (degrees)
                                (lbs.)
                                         (ft.-lbs.)
                                                                (degrees)
                   15.0000
       3.00000
                             .7378E+04 -.5735E+07
First-order corrections to F and THETA ......
                                                     -.380E+01
                                                                 .354E+00
Values factored by .132E+00 - Deltas too large
                                                    -.500E+00
                                                                 .466E-01
   2
       2.50000
                   15.0466
                             .6222E+04 -.4837E+07
```

Page 6

1

1

```
GPEX1.OUT
                                                     -.226E+01
First-order corrections to F and THETA ........
                                                                 .422E+00
Values factored by .221E+00 - Deltas too large
                                                     -.500E+00
                                                                 .935E-01
3 2.00000 15.1400 .4521E+04 -.3516E+07 First-order corrections to F and THETA ......
                                                                 .577E+00
                                                     -.107E+01
Values factored by .465E+00 - Deltas too large
                                                      -.500E+00
                                                                 .269E+00
                             .1766E+04 -.1378E+07
       1.50000
                   15.4087
First-order corrections to F and THETA ......
                                                     -.244E+00
                                                                 .133E+01
                                                     -.215E+00
Second-order correction - Iteration 1 ......
                                                                 .133E+01
                                        2 .....
Second-order correction - Iteration
                                                     -.214E+00
                                                                 .133E+01
Second-order correction - Iteration
                                        3 . . . . . . . .
                                                     -.214E+00
                                                                 .133E+01
                   16.7402 -.3561E+02
                                          .1741E+05
       1.28561
First-order corrections to F and THETA .......
                                                       .168E-01
                                                                 .981E+01
Values factored by .876E+00 - Deltas too large
                                                                 .859E+01
                                                      .147E-01
       1.30034
                   25.3345 -.1078E+02
First-order corrections to F and THETA ......
                                                       .201E-03 -.580E+00
                                                      .210E-03 -.580E+00
Second-order correction - Iteration
Second-order correction - Iteration
                                                      .210E-03 -.580E+00
                                        2 . . . . . . . .
7 1.30055 24.7546 .1190E-02 -.3719E+02 First-order corrections to F and THETA ......
                                                      .413E-04
                                                                 .278E-01
                                                      .414E-04
                                                                 .279E-01
Second-order correction - Iteration
                                        1 .....
8 1.30059 24.7824 .1221E-03 -.2537E+00 First-order corrections to F and THETA ......
                                                      .176E-06
                                                                .126E-03
Factor of Safety - - - - - -
                                       1.301
Side Force Inclination - - - -
                                       24.78
Number of Iterations - - - - -
                                       8
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 5:27:2004 Time: 10:32:43
                                      Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
*********************
   Final Results for Stresses Along the Shear Surface
* (Results for Critical Shear Surface in Case of a Search.) *
SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY
Factor of Safety = 1.301
                               Side Force Inclination = 24.78 Degrees
       ----- VALUES AT CENTER OF BASE OF SLICE-----
                                Total
                                         Effective
Slice
                                Normal
                                          Normal
                                                       Shear
  No.
        X-center Y-center
                                Stress
                                          Stress
                                                       Stress
                      8.008
                                                         191.5
   1
             4.2
                                  194.4
                                             194.4
   2
            13.5
                      803.5
                                  469.0
                                             469.0
                                                         225.3
   3
            20.2
                      805.8
                                  612.5
                                             612.5
                                                         294.3
   4
5
            25.1
                                                         295.6
                      808.1
                                  615.2
                                             615.2
            33.4
                                  549.5
                                             549.5
                                                         234.2
                      812.6
   6
7
            42.5
                                 404.4
                                             404.4
                      818.6
                                                         172.4
                                             286.3
            48.0
                      822.8
                                 286.3
                                                         122.0
```

237.3

74.0

237.3

74.0

101.1

144.3

824.0

825.8

49.4

51.4

1

```
CHECK SUMS - (ALL SHOULD BE SMALL)
SUM OF FORCES IN VERTICAL DIRECTION
                                               .00 (= .307E-03)
                          .100E+03
     SHOULD NOT EXCEED
SUM OF FORCES IN HORIZONTAL DIRECTION
                                                .00
                                                    (=
                                                        .227E-03)
     SHOULD NOT EXCEED
                          .100E+03
SUM OF MOMENTS ABOUT COORDINATE ORIGIN =
                                                .06
                                                    (=
                                                        .577E-01)
     SHOULD NOT EXCEED
                          .100E+03
SHEAR STRENGTH/SHEAR FORCE CHECK-SUM
                                                .00
                                                    (=
                                                        .275E-03)
     SHOULD NOT EXCEED
                          .100E+03
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 5:27:2004 Time: 10:32:43 Input file: GPEX1.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope with Vegetation
  May 20, 2004
TABLE NO. 39
******
   Final Results for Side Forces and Stresses Between Slices.
   (Results for Critical Shear Surface in Case of a Search.)
*********
SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY
Factor of Safety = 1.301
                            Side Force Inclination = 24.78 Degrees
       ------ VALUES AT RIGHT SIDE OF SLICE -------
                          Y-Coord. of
                                       Fraction
                                                  Sigma
                                                            Sigma
                          Side Force
Slice
                                          of
                    Side
                                                    at
                                                             at
  No.
        X-Right
                   Force
                           Location
                                        Height
                                                   Top
                                                           Bottom
                                                   -49.5
            8.3
                     1336.
                                802.7
                                                             858.0
   1
                                          .313
   2
           18.8
                     2108.
                                806.9
                                         .290
                                                   -86.6
                                                             757.6
                                         .277
                                808.1
                                                             776.3
   3
           21.6
                     2235.
                                                  -111.5
   4
           28.6
                     2260.
                                811.4
                                         . 239
                                                  -176.0
                                                             796.1
   5
           38.1
                     1320.
                                816.4
                                          .174
                                                  -189.0
                                                             584.1
   6
           46.9
                       79.
                                817.7
                                        BELOW
                                                  -137.2
                                                             171.3
                                         .398
           49.1
                     -206.
                                825.1
                                                             -87.2
                                                   -21.1
   8
           49.7
                     -281.
                                825.1
                                          .260
                                                    37.4
                                                            -207.5
                                827.4
   9
           53.1
                        0.
                                                      .0
                                          .500
                                                                .0
CHECK SUMS - (ALL SHOULD BE SMALL)
SUM OF FORCES IN VERTICAL DIRECTION
                                                   (= .307E-03)
                                               .00
    SHOULD NOT EXCEED
                          .100E+03
SUM OF FORCES IN HORIZONTAL DIRECTION
                                               .00
                                                    (=
                                                        .227E-03)
    SHOULD NOT EXCEED
                          .100E+03
SUM OF MOMENTS ABOUT COORDINATE ORIGIN =
                                               .06
                                                    (=
                                                        .577E-01)
    SHOULD NOT EXCEED
                         .100E+03
SHEAR STRENGTH/SHEAR FORCE CHECK-SUM
                                               .00
                                                   (=
                                                        .275E-03)
    SHOULD NOT EXCEED
                          .100E+03
**** CAUTION **** FORCES BETWEEN SLICES ARE NEGATIVE AT POINTS
                   ALONG THE UPPER ONE-HALF OF THE SHEAR SURFACE -
                   A TENSION CRACK MAY BE NEEDED.
***** CAUTION ***** SOME OF THE FORCES BETWEEN SLICES ACT AT POINTS
                   ABOVE THE SURFACE OF THE SLOPE OR BELOW THE
                   SHEAR SURFACE - EITHER A TENSION CRACK MAY BE
                   NEEDED OR THE SOLUTION MAY NOT BE A VALID SOLUTION.
```

GPEX1.OUT WORDS - END OF PROBLEM(S) ASSUMED

```
HEADING
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
PROFILE LINES
  1 1 Surface/Vegetated
  -10.00
          799.00
    0.00
          799.77
   21.58
           812.64
   49.09
           827.27
   71.01
           828.01
  150.00
          828.01
  2 2 Fill
    21.58 - 809.64
    49.09 824.27
    71.01 825.01
   150.00 828.01
  3 3 Top of Native Sand
  -50.00
          799.00
    0.00
          796.77
   21.58
          809.64
  150.00
          812.01
  4 4 Top of Native Clay
  ~50.00
          788.00
    0.00
          788.00
  150.00
          788.00
MATERIAL PROPERTIES
        VEGETATED SURFICAL SOILS
   115 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
   15
         27
   NO PORE PRESSURE
   2 EXISTING FILL SOILS
   115 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
   0 29
   NO PORE PRESSUE
   3
      NATIVE GRANULAR SOILS
   125 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
      32
   PIEZOMETRIC LINE
   1
        NATIVE CLAY
   132 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
   1000
        0
   PIEZOMETRIC LINE
   1
  PIEZOMETERIC LINE DATA
  1 62.4
             WATER TABLE
  -50 799
  150 799
```

ANALYSIS/COMPUTATIONS
CIRCULAR SEARCH
50 855 2.0 0
POINT
0.00 799.77
SUBTENDED
6
SHORT
PROCEDURE
SPENCER

COMPUTE

```
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat
TABLE NO. 1
*********
* COMPUTER PROGRAM DESIGNATION - UTEXAS3 *
 Originally Coded By Stephen G. Wright Version No. 1.107
 Last Revision Date 10/13/91
 (C) Copyright 1985-1991 S. G. Wright
* All Rights Reserved
**********
**********
      RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER
 PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY
 HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL
 DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE
 ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER
  PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS
  PROGRAM BEFORE ATTEMPTING ITS USE.
      NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT
 MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR
 IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
  OR ADAPTABILITY OF THIS COMPUTER PROGRAM.
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
 May 20, 2004
TABLE NO.
*******
* NEW PROFILE LINE DATA *
PROFILE LINE 1 - MATERIAL TYPE = 1
Surface/Vegetated
    Point
              Х
      1
              -10.000
                           799.000
                .000
                           799.770
      3
               21.580
                           812.640
              49.090
                           827.270
      4
                           828.010
      5
              71.010
              150.000
                           828.010
PROFILE LINE 2 - MATERIAL TYPE = 2
Fill
    Point
              Х
                           Υ
              21.580
                          809.640
      1
              49.090
      2
                          824.270
```

GPEX1A.OUT

1

1

Page 1

825.010

828.010

3

71.010

150.000

```
GPEX1A.OUT
PROFILE LINE 3 - MATERIAL TYPE = 3
Top of Native Sand
     Point
                Х
                              Υ
                             799.000
               -50.000
       1
                  .000
                             796.770
       2
       3
                21.580
                             809.640
       4
               150.000
                             812.010
PROFILE LINE 4 - MATERIAL TYPE = 4
Top of Native Clay
     Point
                Х
               -50.000
                             788.000
       1
       2
                 .000
                             788.000
               150.000
                             788.000
All new profile lines defined - No old lines retained UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 3
********************
* NEW MATERIAL PROPERTY DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS *
***************
DATA FOR MATERIAL TYPE 1
VEGETATED SURFICAL SOILS
     Unit weight of material = 115.000
     CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
                                   15.000
     Cohesion - - - - - - -
     Friction angle - - - - 27.000 degrees
     No (or zero) pore water pressures
DATA FOR MATERIAL TYPE 2
EXISTING FILL SOILS
     Unit weight of material = 115.000
     CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
     Cohesion - -
     Friction angle - - - - 29.000 degrees
     No (or zero) pore water pressures
DATA FOR MATERIAL TYPE 3
NATIVE GRANULAR SOILS
    Unit weight of material = 125.000
    CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
    Cohesion - - -
    Friction angle - - - - 32.000 degrees
    Pore water pressures defined by piezometric line
                             Page 2
```

```
Number of the piezometric line used = 1
      Negative pore pressures set to zero
DATA FOR MATERIAL TYPE 4
NATIVE CLAY
     Unit weight of material = 132.000
      CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS
     Cohesion - - - - - - - Friction angle - - - -
                                     1000.000
                                     .000 degrees
     Pore water pressures defined by piezometric line Number of the piezometric line used = \,1\,
      Negative pore pressures set to zero
All new material properties defined - No old data retained
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
**************
* NEW PIEZOMETRIC LINE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS *
Line
         Point
                      Х
                                    Υ
 No.
  1 - Unit weight of water =
                                  62.40
                                           WATER TABLE
                                799.000
  1
                   -50.000
                                           WATER TABLE
            1
            2
                   150.000
                                799.000
                                           WATER TABLE
All new piezometric lines defined - No old lines retained UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 15
*********
* NEW ANALYSIS/COMPUTATION DATA *
**********
Circular Shear Surface(s)
Automatic Search Performed
Starting Center Coordinate for Search at -
                                                            50.000
                                                  X =
                                                           855.000
                                                  Y =
Required accuracy for critical center (= minimum
spacing between grid points) =
Critical shear surface not allowed to pass below Y =
                                                                   .000
For the initial mode of search
all circles pass through the point at ~
                                                  X =
                                                              .000
                                Page 3
```

GPEX1A.OUT

1

Maximum subtended angle to be used for subdivision of the circle into slices = 6.00 degrees

Short form of output will be used for search

Procedure used to compute the factor of safety: SPENCER

THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES:

Initial trial estimate for the factor of safety = 3.000

Initial trial estimate for side force inclination = 15.000 degrees
(Applicable to Spencer's procedure only)

Maximum number of iterations allowed for calculating the factor of safety = 40

Allowed force imbalance for convergence \approx 100.000

Allowed moment imbalance for convergence = 100.000

Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be kept constant during search

Depth of crack = .000

Search will be continued to locate a more critical shear surface (if one exists) after the initial mode is complete

Depth of water in crack = .000

Unit weight of water in crack = 62.400

Seismic coefficient = .000

Conventional (single-stage) computations to be performed UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 5:27:2004 Time: 10:44:40 Input file: GPEX1A.dat Gluek Park Remediation Profile #1 - Existing Slope w/o Vegetation May 20, 2004

NOTE - NO DATA WERE INPUT, SLOPE GEOMETRY DATA WERE GENERATED BY THE PROGRAM

Slope Coordinates -

Point	×	Y
1 2 3 4 5	-50.000 -10.000 .000 21.580 49.090 71.010	799.000 799.000 799.770 812.640 827.270 828.010
		rage

```
GPEX1A.OUT
             150.000
                        828.010
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
                  Time: 10:44:40
      5:27:2004
                                 Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 20
**************
* SHORT-FORM TABLE FOR SEARCH WITH CIRCULAR SHEAR SURFACES *
************
                  Center Coordinates of
                                                   1-Stage
                    Critical Circle
                                                            Side
                                                   Factor
                                                     of
                                                            Force
                                    Υ
                                                   Safety
                                                           Inclin.
Mode
                         Х
                                           Radius
   Fixed Point at
                      -10.000
                                845.000
                                            46.322
                                                    1.079
                                                            28.54
    X =
    Y =
             799.8
                                845.000
                                            46.322
                                                            28.54
   Tangent Line
                      -10.000
                                                    1.079
    at Y =
             798.7
TABLE NO. 21
***** 1-STAGE FINAL CRITICAL CIRCLE INFORMATION
                                               ****
X Coordinate of Center - - - - - -
                                     -10.000
Y Coordinate of Center - - - - - -
                                     845.000
Radius - - - - - - - - - - - -
                                      46.322
Factor of Safety - - - - - - -
                                       1.079
Side Force Inclination - - - - - -
                                       28.54
Number of circles tried - - - - -
                                     71
No. of circles F calc. for - - - -
**** CAUTION **** FACTOR OF SAFETY COULD NOT BE COMPUTED FOR SOME
                  OF GRID POINTS AROUND THE MINIMUM
**** RESULTS MAY BE ERRONEOUS ****
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 5:27:2004 Time: 10:44:40
                                Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
 May 20, 2004
TABLE NO. 26
           *************************************
  Coordinate, Weight, Strength and Pore Water Pressure Information for Individual Slices for Conventional
  Computations or First Stage of Multi-Stage Computations.
   (Information is for the Critical Shear Surface in the
  case of an Automatic Search.)
*********
Slice
                        Slice
                                Matl.
                                                Friction
                                                            Pore
         Х
                 Υ
 NO.
                        Weight
                               Type
                                      Cohesion
                                                  Angle
                                                          Pressure
          .0
                799.8
          .0
  1
                799.8
                             .0
                                   1
                                         15.00
                                                  27.00
                                                                .0
          . 0
               799.8
         2.3
               800.4
  2
                          401.4
                                         15.00
                                   1
                                                  27.00
                                                               .0
               801.1
         4.7
```

1

3

6.9

9.2

802.0

802.8

Page 5

1

15.00

27.00

.0

1013.0

```
GPEX1A.OUT
                          1274.1
                                           15.00
                                                    27.00
                                                                  .0
   4
                804.0
         11.3
                                    1
         13.5
                 805.1
         15.5
                806.4
   5
                          1213.6
                                                    27.00
                                                                  .0
                                    1
                                           15.00
         17.5
                 807.7
         19.4
   6
                 809.3
                           883.9
                                    1
                                           15.00
                                                    27.00
                                                                  .0
                 810.8
         21.3
   7
         21.4
                 811.0
                            55.3
                                           15.00
                                                    27.00
                                                                  .0
                                    1
         21.6
                 811.1
                                                                  .0
   8
         23.1
                 812.7
                           272.2
                                    1
                                           15.00
                                                    27.00
         24.7
                 814.3
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
       5:27:2004
                  Time: 10:44:40
                                   Input file: GPEX1A.dat
pate:
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 27
********
   Seismic Forces and Forces Due to Surface Pressures for
   Individual Slices for Conventional Computations or the
   First Stage of Multi-Stage Computations.
                                                           *
                                                           *
   (Information is for the Critical Shear Surface in the
* Case of an Automatic Search.) *
                                    FORCES DUE TO SURFACE PRESSURES
                         Y for
slice
               Seismic
                        Seismic
                                   Normal
                                            Shear
                                            Force
  No.
         Х
               Force
                         Force
                                   Force
                                                        Х
                                                                 Υ
                                                                  .0
                           799.8
   1
           .0
                    0.
                                       0.
                                                О.
                                                         .0
   2
          2.3
                   0.
                           800.8
                                                                  .0
                                                0.
                                                         . 0
                                       0.
                                                                  .0
   3
                                       0.
          6.9
                   0.
                           802.9
                                                0.
                                                         .0
   4
         11.3
                   0.
                                                                  .0
                           805.2
                                       0.
                                                0.
                                                         .0
   5
         15.5
                                                                  .0
                   0.
                           807.7
                                       0.
                                                0.
                                                         .0
         19.4
                   0.
                                                                  .0
   6
                           810.3
                                       0.
                                                0.
                                                         .0
                                                                  .0
                   0.
                           811.8
                                       0.
                                                0.
   7
         21.4
                                                         .0
   8
         23.1
                   0.
                           813.1
                                       0.
                                                0.
                                                         .0
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
                  Time: 10:44:40
                                   Input file: GPEX1A.dat
      5:27:2004
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 29
*************
   Information Generated During Iterative Solution for the Factor
* of Safety and Side Force Inclination by Spencer's Procedure
                 Trial
       Trial
               Side Force
                                        Moment
                                                             pelta
       Factor
                             Force
        of
                                                  Delta-F
Iter-
               Inclination
                           Imbalance
                                      Imbalance
                                                             Theta
               (degrees)
                                      (ft.-1bs.)
                                                           (degrees)
ation
      Safety
                             (1bs.)
                           .1648E+04 -.1277E+07
                 15.0000
First-order corrections to F and THETA .......
                                                 -.504E+01
                                                            .155E+00
values factored by .991E-01 - Deltas too large
                                                 -.500E+00
                                                            .153E-01
                          .1453E+04 -.1127E+07
      2.50000
                 15.0153
First-order corrections to F and THETA ......
                                                 -.314E+01
                                                            .180E+00
values factored by .159E+00 - Deltas too large
                                                 -.500E+00
                                                            .286E-01
```

8

23.1

GPEX1A.OUT

45.5

45.5

35.4

812.7

```
GPEX1A.OUT
CHECK SUMS - (ALL SHOULD BE SMALL)
SUM OF FORCES IN VERTICAL DIRECTION
                                                 .00 (= .524E-04)
     SHOULD NOT EXCEED
                           .100E+03
SUM OF FORCES IN HORIZONTAL DIRECTION
                                                 .00
                                                     (=
                                                         .758E-04)
     SHOULD NOT EXCEED
                           .100E+03
                                                 .45
SUM OF MOMENTS ABOUT COORDINATE ORIGIN =
                                                      (=
                                                          .448E+00)
     SHOULD NOT EXCEED
                           .100E+03
SHEAR STRENGTH/SHEAR FORCE CHECK-SUM
                                                 .00 (=
                                                         .469E-04)
SHOULD NOT EXCEED .100E+03 UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 5:27:2004
                  Time: 10:44:40
                                   Input file: GPEX1A.dat
  Gluek Park Remediation
  Profile #1 - Existing Slope w/o Vegetation
  May 20, 2004
TABLE NO. 39
*************
SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY
Factor of Safety = 1.079
                             Side Force Inclination = 28.54 Degrees
       ----- VALUES AT RIGHT SIDE OF SLICE -------
                           Y-Coord. of
                                        Fraction
                                                   Sigma
                                                             Sigma
                                           of
Slice
                    Side
                          Side Force
                                                              at
                                                     at
        X-Right
                                         Height
  No.
                    Force
                            Location
                                                    Top
                                                            Bottom
                                 799.8
                                          .000
                        0.
                                                       .0
                      165.
                                 801.7
                                          .418
                                                     49.3
                                                              144.8
   2
             4.7
   3
            9.2
                      317.
                                 803.7
                                          .349
                                                     11.1
                                                              220.0
            13.5
                                          .332
   4
                       331.
                                 806.0
                                                     -1.1
                                                              213.4
            17.5
                                          .328
   5
                                                              152.7
                       212.
                                808.6
                                                     -2.5
                                          .414
                       51.
                                                               41.9
   6
            21.3
                                811.5
                                                     13.4
                                811.8
            21.6
                        40.
                                           .499
                                                     23.5
                                                               23.7
                                         ABOVE-10000000.010000000.0
            24.7
                        0.
                                2160.7
CHECK SUMS - (ALL SHOULD BE SMALL) SUM OF FORCES IN VERTICAL DIRECTION
                                                    (= .524E-04)
                                                .00
     SHOULD NOT EXCEED
                          .100E+03
SUM OF FORCES IN HORIZONTAL DIRECTION
                                                .00
                                                     (=
                                                         .758E-04)
     SHOULD NOT EXCEED
                          .100E+03
SUM OF MOMENTS ABOUT COORDINATE ORIGIN =
                                                .45
                                                     (=
                                                         .448E+00)
    SHOULD NOT EXCEED
                          .100E+03
```

END-OF-FILE ENCOUNTERED WHILE READING COMMAND WORDS - END OF PROBLEM(S) ASSUMED

SHEAR STRENGTH/SHEAR FORCE CHECK-SUM

SHOULD NOT EXCEED

1

.100E+03

.00

=

(=

.469E-04)

APPENDIX B

Slope Stability Analyses – Existing Conditions

B-3 Graphic Presentation of Results

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB1
2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB2
2. FRICTION ANGLE (Φ) AND UNIT WEIGHT (γ) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

GLUEK PARK
EXISTING BANK PROFILE NO. 2
(LOOKING NORTH)

05/19/04

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB3
2. FRICTION ANGLE (Φ) AND UNIT WEIGHT (γ) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

EARTH TECH

GLUEK PARK
EXISTING BANK PROFILE NO. 3
(LOOKING NORTH)

05/19/04

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB4
2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB5
2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

GLUEK PARK
EXISTING BANK PROFILE NO. 5
(LOOKING NORTH)

05/19/04

NOTES:

1. SOIL PROFILE BASED ON SOIL BORING SB6

2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

NOTES:
1. SOIL PROFILE BASED ON SOIL
BORING SB7
2. FRICTION ANGLE (Φ) AND
UNIT WEIGHT (γ) ESTIMATED
BASED ON SOIL TYPE AND
FIELD TESTING

NOTES:

1. SOIL PROFILE BASED ON SOIL BORING SB8

2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

APPENDIX C

Slope Stability Analyses - Reconfigurations

- C-1 Typical Data File
- C-2 Typical Output File
- **C-3** Graphic Presentation of Results

APPENDIX C

Slope Stability Analyses - Reconfigurations

C-1 Typical Data File

```
HEADING
  Gluek Park Remediation
  Profile #7 - Reconfiguration Option C
  May 28, 2004
PROFILE LINES
  1 1 Rip Rap
          799.70
    1.50
   16.50
           811.70
  2 2 Surficial Soils
   16.50
           811.70
   55.50
           828.19
   90.90
           830.33
  150.00
           830.33
  3 3 Fill
    29.75 814.40
    55.50 826.19
    90.90 828.33
   150.00 828.33
  4 4 Sand w/Gravel
           799.00
  -50.00
  -10.00
           799.00
    0.00
           796.81
    1.50
           796.70
    9.03
           799.13
   16.50
           809.70
   55.50
           814.40
   90.90
           814.40
  150.00
           814.40
  5 5 Top of Native Clay
  -50.00
           788.00
    0.00
           788.00
  150.00
           788.00
MATERIAL PROPERTIES
       RIP RAP
   138 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
       45
   NO PORE PRESSURE
        VEGETATED SURFICAL SOILS
   115 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
   75 27
   NO PORE PRESSURE
   3 EXISTING FILL SOILS
   115 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
   0
       29
  NO PORE PRESSUE
        SAND with GRAVEL
   125 = UNIT WEIGHT
   CONVENTIONAL SHEAR STRENGTH
       32
  PIEZOMETRIC LINE
        NATIVE CLAY
```

```
132 = UNIT WEIGHT
CONVENTIONAL SHEAR STRENGTH
1000 0
PIEZOMETRIC LINE
1

PIEZOMETERIC LINE DATA
1 62.4 WATER TABLE
-50 799
150 799

ANALYSIS/COMPUTATIONS
CIRCULAR SEARCH
1.50 860 2.0 0
POINT
```

1.50 799.70 SUBTENDED

SHORT PROCEDURE SPENCER

COMPUTE

APPENDIX C

Slope Stability Analyses – Reconfigurations

C-2 Typical Output File

```
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
pate: 6: 2:2004 Time: 12:28:51 Input file: GP70PC.dat
TABLE NO. 1
************
* COMPUTER PROGRAM DESIGNATION - UTEXAS3 *
* originally Coded By Stephen G. Wright
* Version No. 1.107
* Last Revision Date 10/13/91
* (C) Copyright 1985-1991 S. G. Wright
 All Rights Reserved
*********
*************
      RESULTS OF COMPUTATIONS PERFORMED USING THIS COMPUTER *
* PROGRAM SHOULD NOT BE USED FOR DESIGN PURPOSES UNLESS THEY
* HAVE BEEN VERIFIED BY INDEPENDENT ANALYSES, EXPERIMENTAL
 DATA OR FIELD EXPERIENCE. THE USER SHOULD UNDERSTAND THE ALGORITHMS AND ANALYTICAL PROCEDURES USED IN THE COMPUTER
  PROGRAM AND MUST HAVE READ ALL DOCUMENTATION FOR THIS
  PROGRAM BEFORE ATTEMPTING ITS USE.
      NEITHER THE UNIVERSITY OF TEXAS NOR STEPHEN G. WRIGHT
¥
 MAKE OR ASSUME LIABILITY FOR ANY WARRANTIES, EXPRESSED OR
  IMPLIED, CONCERNING THE ACCURACY, RELIABILITY, USEFULNESS
  OR ADAPTABILITY OF THIS COMPUTER PROGRAM.
***************
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
pate: 6: 2:2004
                 Time: 12:28:51
                                Input file: GP70PC.dat
  Gluek Park Remediation
  profile #7 - Reconfiguration Option C
  may 28, 2004
TABLE NO.
******
* NEW PROFILE LINE DATA *
*********
PROFILE LINE 1 - MATERIAL TYPE = 1
Rip Rap
    Point.
              Х
               1.500
                           799,700
              16.500
                           811.700
PROFILE LINE 2 - MATERIAL TYPE = 2
surficial Soils
    Point
              Х
      1
              16.500
                           811.700
              55.500
                           828.190
              90.900
                          830.330
             150.000
                          830.330
PROFILE LINE 3 - MATERIAL TYPE = 3
Fill
    Point
              Х
                          Page 1
```

GP70PC.OUT

1

```
GP70PC.OUT
                               814.400
                 29.750
       2
                 55.500
                               826.190
                               828.330
       3
                 90.900
                150.000
                               828.330
PROFILE LINE
              4 - MATERIAL TYPE = 4
Sand w/Gravel
     Point
                Х
                               Υ
                -50.000
                               799.000
                               799.000
                -10.000
                  .000
                               796.810
       3
                  1.500
       4
                               796.700
       5
                               799.130
```

PROFILE LINE 5 - MATERIAL TYPE = 5 Top of Native Clay

6

8

1

9.030 16.500 55.500

90.900

150.000

Point	×	Υ .
1	-50.000	788.000
2	000	788.000
3	150.000	788.000

All new profile lines defined - No old lines retained UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004

809.700

814.400

814.400

814,400

DATA FOR MATERIAL TYPE 1 RIP RAP

Unit weight of material = 138.000

CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - .000 Friction angle - - - - 45.000 degrees

No (or zero) pore water pressures

DATA FOR MATERIAL TYPE 2 VEGETATED SURFICAL SOILS

Unit weight of material = 115.000

CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - 75.000 Friction angle - - - - 27.000 degrees

No (or zero) pore water pressures Page 2

GP70PC.OUT DATA FOR MATERIAL TYPE 3 EXISTING FILL SOILS Unit weight of material = 115.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - -.000 Friction angle - - - - 29.000 degrees No (or zero) pore water pressures DATA FOR MATERIAL TYPE 4 SAND with GRAVEL Unit weight of material = 125.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - - - - .000 Friction angle - - - - 32.000 degrees Pore water pressures defined by piezometric line Number of the piezometric line used $=\ 1$ Negative pore pressures set to zero DATA FOR MATERIAL TYPE 5 NATIVE CLAY Unit weight of material = 132.000 CONVENTIONAL (ISOTROPIC) SHEAR STRENGTHS Cohesion - - - -1000.000 .000 degrees Friction angle - - - - -Pore water pressures defined by piezometric line Number of the piezometric line used = $\,1\,$ Negative pore pressures set to zero All new material properties defined - No old data retained UTEXAS3 - VER. 1.107 - 10/13/91 - (c) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004 TABLE NO. 5 ***************** * NEW PIEZOMETRIC LINE DATA - CONVENTIONAL/FIRST-STAGE COMPUTATIONS * *********** Line Point Х No. 1 - Unit weight of water = 62.40 WATER TABLE 799.000 ~50.000 WATER TABLE 799.000 WATER TABLE 1 150.000

All new piezometric lines defined - No old lines retained UTEXAS3 - VER. 1.107 - 10/13/91 - (c) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004

1

1

Page 3

Circular Shear Surface(s)

Automatic Search Performed

Starting Center Coordinate for Search at -

X = 1.500Y = 860.000

Required accuracy for critical center (= minimum spacing between grid points) = 2.000

Critical shear surface not allowed to pass below Y = .000

For the initial mode of search all circles pass through the point at -

X = 1.500Y = 799.700

Maximum subtended angle to be used for subdivision of the circle into slices = 6.00 degrees

Short form of output will be used for search

Procedure used to compute the factor of safety: SPENCER

THE FOLLOWING REPRESENT EITHER DEFAULT OR PREVIOUSLY DEFINED VALUES:

Initial trial estimate for the factor of safety = 3.000

Initial trial estimate for side force inclination = 15.000 degrees (Applicable to Spencer's procedure only)

Maximum number of iterations allowed for calculating the factor of safety = 40

Allowed force imbalance for convergence = 100.000

Allowed moment imbalance for convergence = 100.000

Initial trial values for factor of safety (and side force inclination for Spencer's procedure) will be kept constant during search

Depth of crack = .000

Search will be continued to locate a more critical shear surface (if one exists) after the initial mode is complete

Depth of water in crack = .000

Unit weight of water in crack = 62.400

Seismic coefficient = .000

1

Conventional (single-stage) computations to be performed UTEXAS3 - VER. 1.107 - 10/13/91 - (c) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP70PC.dat Page 4

Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004

NOTE - NO DATA WERE INPUT, SLOPE GEOMETRY DATA WERE GENERATED BY THE PROGRAM

Slope Coordinates -

Point	X	Υ
1	-50.000	799.000
2	-10.000	799.000
3	.000	796.810
4	1.500	796.700
5	1.500 16.500	799.700 811.700
7	55.500	828.190
8	90.900	830.330
9	150.000	830.330

UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C

Profile #/ - Reconfiguration Option C May 28, 2004

TABLE NO. 20

1

1

* SHORT-FORM TABLE FOR SEARCH WITH CIRCULAR" SHEAR SURFACES *

	Ce	nter Coordi Critical C	1-Stage Factor			
Mod	e	x	Y	Radius	of Safety	Force Inclin.
1	Fixed Point at X = 1.5 Y = 799.7	-62.500	998.000	208.372	1.356	25.37
2	Tangent Line at Y = 789.6	-62.500	998.000	208.372	1.356	25.37

TABLE NO. 21
***** 1-STAGE FINAL CRITICAL CIRCLE INFORMATION *****

Number of circles tried - - - - - 90
No. of circles F calc. for - - - - 74
UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT
Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat
Gluek Park Remediation
Profile #7 - Reconfiguration Option C
May 28, 2004

Page 5

TABLE N	0. 26		GP70PC.	OUT			
* Coor * Info * Comp * (Inf * Case	dinate, rmation utations ormation of an A	Weight, S for Indiv or First is for t	trength and didual Slice Stage of the Critica Search.)	d Pore es for Multi- l Shea	Water Pre Conventio Stage Comp r Surface	ssure nal utations. in the	* * * *
Slice No.	×	Υ		Matl. Type	Cohesion	Friction Angle	Pore Pressure
1	1.5 5.3 9.0	799.7 801.0 802.3	1784.1	1	.00	45.00	.0
2	10.5 12.1	802.9 803.4	1709.9	1	.00	45.00	.0
3	14.3 16.5	804.3 805.2	3308.8	4	.00	32.00	.0
4	23.1	808.2 811.2	9951.2	4	.00	32.00	.0
5	29.9 30.1	811.3 811.3	255.8	4	.00	32.00	.0
6	39.6 49.1	816.7 822.0	10449.0	3	.00	29.00	.0
7	52.2 55.2	824.0 826.1	1907.9	3	.00	29.00	.0
8	55.3 55.5	826.2 826.3	68.9	2	75.00	27.00	.0
9	57.0 58.5	827.3 828.4	335.1	2	75.00	27.00	.0
Date: (Gluek Profi	6: 2:200 Park Re	4 Time: mediation	0/13/91 - 12:28:51 ration Opt	Inpu	85-1991 s. t file: GP	G. WRIGHT 70PC.dat	
TABLE NO			****	ينديد بديديد		ران بالدران بالدران بالدران	ıt.
* Seisr * Indiv * Firs * (Info * Case	mic Forc vidual S t Stage ormation of an A	es and Fo lices for of Multi- is for t utomatic	rces Due t Conventio Stage Comp he Critica Search.)	o Surfa nal Co utation l Shea	ace Pressu omputation ns. r Surface	res for s or the in the	* * * *
			Y for	FOR	CES DUE TO	SURFACE P	RESSURES
Slice No.	×	Seismic Force	Seismic Force	Norma Force		x	Y
Date: 6	5: 2:200 ⁴	0. 0. 0. 0. 0. 0. 0. 1.107 - 10 4 Time: nediation	801.9 804.9 807.2 811.3 814.3 819.1 825.4 827.1 827.8 0/13/91 -	(((((C) 198 (C) 190t	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	0 0 0 0 0 0 0	.0

GP7OPC.OUT Profile #7 - Reconfiguration Option C May 28, 2004

TABLE NO. 29	****
* Information Generated During Iterative Solution for the F * of Safety and Side Force Inclination by Spencer's Procedu	actor *
Trial Trial Factor Side Force Force Moment Iter- of Inclination Imbalance Imbalance Delta-F ation Safety (degrees) (lbs.) (ftlbs.)	Delta Theta (degrees)
1 3.00000 15.0000 .7093E+045513E+07 First-order corrections to F and THETA355E+01 Values factored by .141E+00 - Deltas too large500E+00	.311E+00 .438E-01
2 2.50000 15.0438 .5902E+044588E+07 First-order corrections to F and THETA208E+01 Values factored by .240E+00 - Deltas too large500E+00	.373E+00 .895E-01
3 2.00000 15.1334 .4148E+043226E+07 First-order corrections to F and THETA956E+00 Values factored by .523E+00 - Deltas too large500E+00	.521E+00 .272E+00
4 1.50000 15.4057 .1305E+041020E+07 First-order corrections to F and THETA174E+00 Second-order correction - Iteration 1158E+00 Second-order correction - Iteration 2158E+00	.146E+01 .146E+01 .146E+01
5 1.34231 16.86251545E+02 .3842E+04 First-order corrections to F and THETA144E-01 Values factored by .864E+00 - Deltas too large .125E-01	.994E+01 .859E+01
	889E-01 890E-01
7 1.35579 25.3679 .3052E-046359E+01 First-order corrections to F and THETA945E-05 Second-order correction - Iteration 1930E-05	.622E-02 .611E-02
8 1.35580 25.3740 .1373E-033584E+00 First-order corrections to F and THETA	.254E-03
Factor of Safety 1.356 Side Force Inclination 25.37 Number of Iterations 8 UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP7OPC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004	
TABLE NO. 38 ***********************************	* *
SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY Factor of Safety = 1.356 Side Force Inclination = 25.37 Page 7	7 Degrees

----- VALUES AT CENTER OF BASE OF SLICE-----

Slice No.	X-center	Y-center	Total Normal Stress	Effective Normal Stress	Shear Stress
1 2 3 4 5 6 7 8	5.3 10.5 14.3 23.1 29.9 39.6 52.2 55.3 57.0	801.0 802.9 804.3 808.2 811.3 816.7 824.0 826.2 827.3	222.0 510.1 647.8 624.2 566.9 421.8 226.1 153.0 69.5	222.0 510.1 647.8 624.2 566.9 421.8 226.1 153.0 69.5	163.8 376.2 298.6 287.7 261.3 172.5 92.4 112.8 81.4

CHECK SUMS - (ALL SHOULD BE SMALL) SUM OF FORCES IN VERTICAL DIRECTION .00 = .864E-03.100E+03 SHOULD NOT EXCEED SUM OF FORCES IN HORIZONTAL DIRECTION = .00 (= .484E-03) .100E+03 SHOULD NOT EXCEED .15 (= .147E+00)SUM OF MOMENTS ABOUT COORDINATE ORIGIN = SHOULD NOT EXCEED .100E+03 SHEAR STRENGTH/SHEAR FORCE CHECK-SUM .00 .449E-03) (= SHOULD NOT EXCEED .100E+03 UTEXAS3 - VER. 1.107 - 10/13/91 - (C) 1985-1991 S. G. WRIGHT Date: 6: 2:2004 Time: 12:28:51 Input file: GP70PC.dat Gluek Park Remediation Profile #7 - Reconfiguration Option C May 28, 2004

1

TABLE NO. 39 Final Results for Side Forces and Stresses Between Slices.

SPENCER'S PROCEDURE USED TO COMPUTE FACTOR OF SAFETY Factor of Safety = 1.356Side Force Inclination = 25.37 Degrees

					_	- :	•
 VALUES	ΑT	RIGHT	SIDE	OF	SLICE		

X-Right		Y-Coord. of Side Force Location	Fraction of Height	Sigma at Top	Sigma at Bottom
9.0	728.	802.8	.143	-219.0	602.3
12.1	1351.	803.9	. 105	-353.3	869.9
16.5	1556.	805.9	.143	-304.3	838.3
29.8	1646.	812.2	.165	-244.7	729.0
30.1	1638.	812.4	.165	-244.2	728.3
49.1	269.	822.2	.047	-121.1	261.9
55.2	-112.	826.4	. 198	40.9	-141.6
55.5	-109.	826.6	. 207	45.2	-164.6
58.5	0.	1884.9	ABOVE-10	000000.010	0.00000
	9.0 12.1 16.5 29.8 30.1 49.1 55.2 55.5	X-Right Force 9.0 728. 12.1 1351. 16.5 1556. 29.8 1646. 30.1 1638. 49.1 269. 55.2 -112. 55.5 -109.	Side Side Force X-Right Force Location 9.0 728. 802.8 12.1 1351. 803.9 16.5 1556. 805.9 29.8 1646. 812.2 30.1 1638. 812.4 49.1 269. 822.2 55.2 -112. 826.4 55.5 -109. 826.6	X-Right Side Force Force Location of Height 9.0 728. 802.8 .143 12.1 1351. 803.9 .105 16.5 1556. 805.9 .143 29.8 1646. 812.2 .165 30.1 1638. 812.4 .165 49.1 269. 822.2 .047 55.2 -112. 826.4 .198 55.5 -109. 826.6 .207	X-Right Side Force Force Location of Height at Top 9.0 728. 802.8 .143 -219.0 12.1 1351. 803.9 .105 -353.3 16.5 1556. 805.9 .143 -304.3 29.8 1646. 812.2 .165 -244.7 30.1 1638. 812.4 .165 -244.2 49.1 269. 822.2 .047 -121.1 55.2 -112. 826.4 .198 40.9 55.5 -109. 826.6 .207 45.2

CHECK SUMS - (ALL SHOULD BE SMALL) SUM OF FORCES IN VERTICAL DIRECTION .00 .864E-03) SHOULD NOT EXCEED .100E+03 SUM OF FORCES IN HORIZONTAL DIRECTION = .00 (= .484E-03) Page 8

GP7OPC.OUT

SHOULD NOT EXCEED .100E+03

SUM OF MOMENTS ABOUT COORDINATE ORIGIN = .15 (= .147E+00)

SHOULD NOT EXCEED .100E+03

SHEAR STRENGTH/SHEAR FORCE CHECK-SUM = .00 (= .449E-03)

SHOULD NOT EXCEED .100E+03

END-OF-FILE ENCOUNTERED WHILE READING COMMAND WORDS - END OF PROBLEM(S) ASSUMED

APPENDIX C

Slope Stability Analyses – Reconfigurations

C-3 Graphic Presentation of Results

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB7
2. FRICTION ANGLE (Φ) AND UNIT WEIGHT (γ) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

EARTH TECH

RECONFIGURATION - OPTION A
GLUEK PARK
BANK PROFILE NO. 7
(LOOKING NORTH)

05/19/04

NOTES:
1. SOIL PROFILE BASED ON SOIL BORING SB7
2. FRICTION ANGLE (\$\phi\$) AND UNIT WEIGHT (\$\gamma\$) ESTIMATED BASED ON SOIL TYPE AND FIELD TESTING

EARTH TECH

RECONFIGURATION - OPTION B GLUEK PARK BANK PROFILE NO. 7 (LOOKING NORTH)

05/19/04

10'

SCALE

73040

RECONFIGURATION - OPTION C GLUEK PARK BANK PROFILE NO. 7 (LOOKING NORTH)

05/19/04